
Optimizing In-memory Database Engine for AI-powered On-line
Decision Augmentation Using Persistent Memory

Cheng Chen∗†
Jun Yang∗
Mian Lu

Taize Wang
Zhao Zheng
Yuqiang Chen
Wenyuan Dai
4Paradigm Inc.

[chencheng,yangjun01,lumian,wangtaize,
zhengzhao,chenyuqiang,daiwenyuan]

@4paradigm.com

Bingsheng He
Weng-Fai Wong

National University of Singapore.
[hebs,wongwf]@comp.nus.edu.sg

Guoan Wu
Yuping Zhao
Andy Rudoff
Intel Corporation

[dennis.wu,yuping.zhao,andy.rudoff]
@intel.com

ABSTRACT
On-line decision augmentation (OLDA) has been considered as a
promising paradigm for real-time decision making powered by Ar-
tificial Intelligence (AI). OLDA has been widely used in many ap-
plications such as real-time fraud detection, personalized recom-
mendation, etc. On-line inference puts real-time features extracted
from multiple time windows through a pre-trained model to eval-
uate new data to support decision making. Feature extraction is
usually the most time-consuming operation in many OLDA data
pipelines. In this work, we started by studying how existing in-
memory databases can be leveraged to efficiently support such
real-time feature extractions. However, we found that existing in-
memory databases cost hundreds or even thousands of millisec-
onds. This is unacceptable for OLDA applications with strict real-
time constraints.We therefore propose FEDB (FeatureEngineering
Database), a distributed in-memory database system designed to
efficiently support on-line feature extraction. Our experimental re-
sults show that FEDB can be one to two orders of magnitude faster
than the state-of-the-art in-memory databases on real-time feature
extraction. Furthermore, we explore the use of the Intel Optane
DC Persistent Memory Module (PMEM) to make FEDB more cost-
effective. When comparing the proposed PMEM-optimized persis-
tent skiplist to the FEDB using DRAM+SSD, PMEM-based FEDB
can shorten the tail latency up to 19.7%, reduce the recovery time
up to 99.7%, and save up to 58.4% total cost of a real OLDA pipeline.

PVLDB Reference Format:
Cheng Chen, Jun Yang, Mian Lu, Taize Wang, Zhao Zheng, Yuqiang Chen,
Wenyuan Dai, Bingsheng He, Weng-Fai Wong, Guoan Wu, Yuping Zhao,
and Andy Rudoff. Optimizing In-memory Database Engine for
AI-powered On-line Decision Augmentation Using Persistent Memory.
PVLDB, 14(5): 799 - 812, 2021.
doi:10.14778/3446095.3446102
∗Both authors contributed equally to the paper
†C. Chen, is also with National University of Singapore.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication

User
APP/Web/POS

Off-line
Training

HDFS

On-line
Inference

Kafka

Insert Requests
/Predictions/Feedbacks

Upload New Model Upload New Feature
Extraction Script

In-memory
Database(FEDB)

On-line Process

Off-line Process
Requests

API Server
Predictions Requests Feedbacks

Responds

Predictor

Insert New Requests

Features
ExtractionParameter

Server

Predict

Feature Engineering
& Model Training

Figure 1: Workflow of AI-powered OLDA Systems

1 INTRODUCTION
Over the past decade, artificial intelligence (AI) has increasingly
attracted a significant amount of attention from both academia
and industry. As computational power increases, AI makes sub-
stantial progress in integrating into the daily work routines of en-
terprises to improve productivity. In various fields such as finan-
cial services, healthcare, retail and transportation, on-line deci-
sion augmentation (OLDA) powered by AI has become one of
the fastest-growing and promising paradigms to enable timely de-
cision making. According to the latest report from Gartner [59],
the market value of OLDA will reach $2.2 billion by 2025 and ac-
count for 44% of AI market value by 2030. Therefore, this paper
focuses on improving the performance and cost-effectiveness of
OLDA pipelines.

We have studied many OLDA pipelines in the real world, and
the designs are similar. Fig. 1 shows a representative OLDA work-
flow from 4Paradigm, anOLDA solution provider in China. Similar
workflows can be found in other OLDA systems. A typical OLDA

rights licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 5 ISSN 2150-8097.
doi:10.14778/3446095.3446102

799

https://doi.org/10.14778/3446095.3446102
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3446095.3446102

system consists of two separated sub-systems, (1) the off-line train-
ing system that derives a trainedmodel for a specific problem using
historical data and (2) the on-line inference systemwhich interacts
with the front-end (e.g. software/mobile app/website) to process
prediction/scoring requests. The result of the on-line inference is
calculated through the trained model by feeding the extracted fea-
tures as its input. The response time of these requests is the key
performancemetric of the entire OLDA system as it directly affects
the user experience. Thus, many OLDA pipelines have rigid time
constraints on such real-time feature extraction operations.

Most of the real-time features are required to be computed over
multiple time windows. To achieve low-latency feature extraction,
existing in-memory databases can ideally be leveraged for these op-
erations. Specifically, with in-memory databases, the on-line fea-
ture extraction process involves a new record insertion followed
by an enormous number of concurrent analytical queries related
to the new record. However, our studies showed that the latency
of extracting real-time features grows proportionally to the num-
ber of time windows in two state-of-the-art in-memory databases.
As a result, if we increase the number of time windows to get bet-
ter prediction accuracy, the response time will be unacceptable for
those OLDA systems that have strict timing constraints.

In this paper, we propose FEDB (FeatureEngineeringDatabase),
a distributed in-memory database system that specifically designed
to efficiently support on-line feature extraction in OLDA systems
with its LLVM-based [67] query execution engine and in-memory
structure based on a double-layered skiplist.

In order to further reduce the total ownership cost of FEDB, we
propose taking advantage of the recently announced persistent
memory product named Intel® Optane™ DC Persistent Memory
Module (PMEM). PMEM has a lower per-GB cost, higher density
and is non-volatile compared with DRAM. Previous studies [8, 15,
16, 34, 37, 40, 48, 62, 69] have shown that making in-memory data
structures persistent in PMEM without compromising data consis-
tency is a non-trivial task. Specifically, we extend FEDB with a
PMEM-optimized persistent skiplist.

Our contributions are summarized as follows:

• We describe and analyze the entire data processing work-
flow of OLDA using an example from the fraud detection
system of 4Paradigm.We summarize the characteristics and
challenges on efficiently supporting the OLDA applications.
• We propose FEDB for more efficient real-time feature ex-

traction.We also introduce FEQL (Feature ExtractionQuery
Language), a SQL-like language to facilitate feature extrac-
tion in FEDB. The FEQL engine utilizes the LLVM compiler
framework for efficient query compilation and execution.
• We propose a PMEM-optimized persistent skiplist and in-

tegrate it into the storage engine of FEDB. Our proposal
not only improves the utilization of PMEM, but also enables
faster recovery.
• Under the real-world fraud detection workloads, our exper-

imental results show that, FEDB can be up to two orders of
magnitude faster than the state-of-the-art commercial data-
base systems. Furthermore, PMEM-based FEDB can shorten

up to 19.7% of the tail latency, reduce up to 99.7% of the re-
covery time, and save up to 58.4% total cost of the fraud
detection system compared to FEDB using DRAM+SSD.

The rest of the paper is organized as follows. Sec. 2 introduces
the background of OLDA, on-line feature extraction and PMEM.
Sec. 3 states the motivation of this study. Sec. 4 proposes the design
and implementation of FEDB, followed by the details of the PMEM-
optimized design in Sec. 5. The experimental results are shown in
Sec. 6 and Sec. 7 concludes this paper.

2 BACKGROUND & RELATEDWORK
2.1 On-line Decision Augmentation (OLDA)
Over the years, OLDA has attracted significant interest from both
industry and academia. According to the report from International
Data Corporation [25], 4Paradigm is ranked first in China for mar-
ket share amongst all machine learning platforms. It has provided
OLDA solutions and helped 8, 000+ customers in 12, 000+ scenar-
ios to complete AI transformation during the past 5 years.

We will dive deeper into the OLDA pipelines with the fraud
detection system from 4Paradigm that is in active deployment as
an example. In the deployment, the AI-powered solution is able
to detect fraud instantly with high accuracy, and it has already
helped thousands of millions of users from a top bank in China. As
shown in Fig. 1, when a user swipes his/her credit card through
a point-of-sale (POS) device, the credit card transaction is sent to
an API server requesting for a prediction on whether it is a fraud.
Upon receiving the request, the OLDA system first inserts the new
transaction into an in-memory database then immediately extracts
features based on the user’s and shop’s profile, historical transac-
tions, etc. These features are fed into a pre-trained machine learn-
ing model that scores and predicts the probability of the current
transaction being a fraud. At a later stage, the final prediction re-
sult is checked against the user’s behavior (such as whether the
user reports the trade as a fraud, etc) and used as feedback for off-
line training to further tune the model.

In the entire OLDA processing cycle, the timeliness of on-line
inference is one of the most important factors for the system per-
formance, which is also the main focus of this paper. The on-line
inference process consists of several steps including the on-line
feature extraction, scoring and prediction. All these steps have to
be completed within tens of milliseconds after users swipe their
credit card. In the entire process, we found that the on-line feature
extraction is the most time-consuming part and a major bottleneck
in reducing the response time of the OLDA applications [70].

2.2 Online Feature Extraction
Feature extraction can be recognized as obtaining the “hidden in-
formation” in the raw data that is the key to achieve better accu-
racy of the trained model. For example, detecting fraud is highly
related to recent behaviors, and real-time features make a great im-
pact on improving the prediction accuracy. As shown in Fig. 2, the
extraction of real-time features has the following characteristics.

Firstly, most of the real-time features have to be computed us-
ing the information from the newly generated transaction record,
thus, these features can not be pre-extracted until the new record
is received. For instance, the feature that records the difference in

800

POS InfoDate Time Amount Types of CurrencyCard ID . . .

8880xxxxxx20200702 13:26 124.8 USD9527xxxxxx . . .

A New Transaction
/Purchasing Record

Shops Table
Cards & Account

Table

Cheating
List

Historical
Transactions

. . .

Card Info: Card Level, Activation Date,
Payment Due Date, . . .

Account Info: Card Number, Current Balance,
Credit Limit Amount, Available Credit. . .

Shop Info: Shop ID, Type, Location , City,
Country, . . .

Pattern of Visited Shops:
• The top 3 shops that most

frequently appear in the last 10s,
1/5/10 mins.

• The top 3 shop types that most
frequently appear in the last 10s,
1/5/10 mins.

. . .

o Pattern of Visited
Cities:

o Pattern of Visited
Countries :

. . .

Basic

Features

(hundreds of)

Real-time

Features

(thousands of)

Pattern of the Transaction Time:
• The top 3 time-of-the-day of the

transactions happened in last 1/3/5
days, 1/2/3/4 weeks

• The top 3 amount of the transactions
happened in the last 10s, 1/5/10 mins

• The amount differs from the last

transaction . . .

Figure 2: An Illustration of On-line Feature Extraction of Fraud Detection System in 4Paradigm

the amount between the last and new transaction can only be cal-
culated after getting the new record.

Secondly, most real-time features are time-related and required
to be computed over multiple time windows. For example, based
on the shops or time-of-the-day the transactions most frequently
happened, a user’s habit can be inferred. To fully describe a user’s
recent (e.g., 1/5/30/60 minutes), medium-term (e.g., 1/3/7 days) and
long-term (e.g., weeks or months) purchasing habits, we need to
look into multiple time windows. Based on our experience, the
more time windows are involved in the feature extraction process,
the more accurate the prediction will be.

Lastly, OLDA systems extract a large number of real-time fea-
tures to achieve high prediction accuracy. In practice, we have ex-
tracted thousands of the real-time features for each prediction in
our real-world fraud detection system, which dominates the over-
all response time. From the database point of view, the real-time
feature extraction can be represented as inserting a new record,
followed by a large number of queries in previous time windows.

2.3 Database Support for OLDAWorkload
To support OLDA applications efficiently, we have revisited sev-
eral relevant database systems. Relational in-memory databases
that support OLTP, OLAP, or HTAP workload are potential can-
didates to efficiently support the feature insertions and queries in
previous time windows. The OLTP databases widely use a row-
based storage engine focusing on optimizing transactional inser-
tion performance [23, 35, 45], and the OLAP databases apply a
column-based storage engine that is more suitable for read-only
analysis workload [6, 56–58, 71, 72]. OLDA workloads differ from
OLTP/OLAP workloads. OLDA is similar to HTAP in that both
reads and writes are involved [5, 18, 42, 43, 54]. However, OLDA
considers the combined “insert + queries” operations as a unique
pattern of “one insertion followed by aggregation queries on a
large number of columns over multiple time windows”. The lat-
ter queries always require the prior insertion to compute their re-
sults. Time-series databases (TSDB), such as the TimescaleDB in
PostgreSQL [26], InfluxDB [27], etc, were originally designed and
optimized for applications such as distributed system monitoring

and the Internet of things. The workload optimized by TSDB is
also different from the OLDA workload. In TSDB workloads, 95%
- 99% of operations are write operations [2]. OLDA workloads, on
the other hand, have a large number of read-only queries. There
are a number of recent works aimed at better supporting AI work-
loads [3, 12, 22, 36, 38, 41, 50, 52, 53, 55, 61]. However, to the best
of our knowledge, there are no database design dedicated to the
OLDA workload.

2.4 Intel Optane DC Persistent Memory

Table 1: Data Size of Our Fraud Detection System

of Users # of Cards Historical
Trans. Mem. Usage

0.7 billion 1 billion >1 billion >3 terabytes
As shown in Table 1, the in-memory data of our real-world fraud

detection occupied more than 3 terabyte (TB) of memory. We can
only store the transactions of the last 3 months due to the DRAM
capacity limitation. When using the database replica during the
deployment, it further doubles/triples the memory usage and sig-
nificantly increased the hardware cost.

The gap between the huge memory demand and the physical
limitation of DRAM capacity in a single server significantly in-
creased the overall cost of the OLDA solution. Compared with
DRAM, the non-volatile random access memory (NVRAM) provides
much larger capacity [34], and it gives us a way to address the
above issue. NVRAM is a set of persistent memory technologies
that provide byte addressable random access and the capability
to persist data even after power failure. Intel Optane DC Persis-
tent Memory Module (PMEM) [28] is the first commercial product
of the Non-volatile memory technology now available in the mar-
ket. PMEM provides similar performance yet at a lower price per
GB [1]. This technology gives us a new option to tackle “memory-
hungry” applications. As shown in Fig. 3, PMEM can work in two
modes: Memory Mode and App Direct Mode.

Memory Mode: PMEM is working as the system memory while
DRAM works as a direct-mapped cache. The operating system can

801

App Direct ModeMemory ModeDRAM

User
Space

Kernel
Space

DRAM as cache

Intel® Optane™
DC Memory

Applications Applications

Persistent Memory
Aware File System

MMAP

PMDK

Persistent Region

Figure 3: Intel Optane DC Persistent Memory Module

directly use the entire PMEM as a ‘large’ memory. Note that al-
though PMEM is non-volatile, there is no persistency guarantee
for in-memory data in this mode. However, existing in-memory
applications will work as before without modification.

App Direct Mode: This mode provides a way to directly access
PMEM. The operating system recognizes PMEM as a persistent
memory device. When PMEM is mounted with a PMEM-aware file
system (such as Ext4/XFS-DAX and NOVA [68]), a user application
can map a file into the user memory space. By using POSIX API
mmap, the applications can directly access PMEM without the
overhead of kernel system calls.

A series of works have been done to explore the integration of
PMEM into the system design [4, 7, 9, 11, 13, 19, 20, 44, 47]. Due
to the read/write performance gap between DRAM and PMEM, a
number of works [8, 10, 37, 48, 51, 60, 63, 64] have been proposed to
reduce the performance penalty of writes when applying PMEM.
Encouraged by those studies, we studied the PMEM-based data
structure to reduce the total ownership cost of OLDA applications.

3 MOTIVATION
3.1 Motivations with Existing In-Memory

Databases

card_id timestamp C_1 . . . C_N amount
“pk_1” 1593724369565 groupX . . . groupX

“pk_1” 1593724369665 groupX . . . groupX

… … groupX . . . groupX

“pk_1” 1593724469565 groupX . . . groupX

“pk_2”

…

“pk_2000”

Window 1

Window 2

Window X

Number of Catalogs

Number of
Time Windows

Figure 4: Table Schema Example

As discussed in Sec 2.3, online feature extraction in OLDA sys-
tems can be done using existing in-memory database systems. In

26 55 112 166 223

404

862

1,646

2,517

3,186

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 4 6 8

Number of Time Windows

DB-X DB-Y

La
te
n
cy

(m
s)

Figure 5: Performance of Extracting Real-time Features over
Varied Number of Time Windows

practice, real-time feature extraction can be done via TopN queries
on different columns over multiple time windows. However, we
found that their performance cannot meet the strict timing con-
straints of real-world OLDA applications such as fraud detection.
We perform a case study with the OLDA pipeline mentioned in
Fig. 2. A sample table schema is shown as Fig. 4. The table can be
wide, consisting of (1) card_id, (2) timestamp, (3) amount and (4) cat-
alog[1..N]. Those columns are designed for the TopN queries. For
example, shop_info can be transformed into multiple columns like
catalog1(C_1) having a value from the set {supermarket/canteen…}
to describe the types of shops, catalog2(C_2) having a value from
the set {morning/afternoon/night…} to describe what time-of-the-
day the transactions happened, etc. In addition to the primary key
being the combination of (card_id, timestamp), extra indexes for
each column that are required to perform the TopN queries are
also maintained in the form of a combined index with timestamp
so as to obtain the best performance.

Given the card_id of ‘D’, a current timestamp ‘CUR_TS’ and
a time window ‘W’, we can execute a SQL query like ”SELECT
GROUP_CONCAT(catalogX) FROM (SELECT catalogX
FROM table WHERE card_id = D and CUR_TS < W)
GROUP BY catalogX ORDER BY count (*) DESC LIMIT
3” to find the Top3 most frequent values of catalogX in the time
window W. To extract the real-time features in M time windows
from a table with N catalogs, the above SQL needs to be issued
𝑁 ×𝑀 times. We measured the duration of executing these queries
concurrently in two popular in-memory database systems denoted
as DB-X andDB-Y. Both of them are state-of-the-art commercial in-
memory DBMS that are well-known to support HTAP workloads.

Fig. 5 shows the average execution time for extracting the real-
time features in the table above with 32 catalogs. As the number
of time windows increases, the execution time of both systems
increases proportionally. According to our experience in OLDA
workloads, the more time windows are used to extract the real-
time features, the more accurate the prediction will be. In practice,
our fraud detection system requires at least 10 timewindows (some

802

catalogs may need more) to achieve an acceptable prediction accu-
racy with a requirement of sub 100ms on response time. However,
both DB-X and DB-Y cannot meet the latency requirement with
the number of timewindows larger than 3.This indicates that exist-
ing database systems are not well-optimized for concurrent TopN
queries on different columns in multiple time windows for real-
time feature extraction in OLDA pipelines.

3.2 Motivations for PMEM
With the large main memory footprint, OLDA workloads have the
following challenges.

(1) Hardware cost becomes a challenge when using this solu-
tion for OLDA applications. Due to the rapid data growth
as we observed in many applications, OLDA applications
will require more than tens of terabytes memory. DRAM
capacity per DIMM, as well as the number of DIMM slots
on the mainboard are physically limited. The demand for
huge memory would therefore translate to higher cost ei-
ther in the form of an expensive customized machine, or a
large number of regular machines organized as a cluster. In
both cases, system development and maintenance will be
increased accordingly.

(2) Due to the volatility of DRAM, most in-memory databases
still use persistent secondary storage devices (HDDs/SSDs)
as persistent/backup storage. Normally, data is periodically
synced to the secondary storage device to minimize the neg-
ative performance impact as the write performance of these
devices is orders of magnitude slower than DRAM. How-
ever, under insertion-heavy workloads, tail latency can be
too high that the strict timing requirement of OLDA appli-
cations cannot be met.

(3) Long recovery time affects the system availability. Note that
one hour of downtime per year decreases the system avail-
ability under 99.99% [21]. When recovering from failure, the
system has to reload all the data from the slow persistent
storage device. As the size of the data stored in DRAM is
huge, the recovery can be very time-consuming (can last a
few hours or even more).

PMEM provides us a more cost-efficient option to deploy ap-
plications such as our FEDB for OLDA applications. Although di-
rectly using PMEM in memory mode is the easiest way to address
the first challengewithoutmodifying existing applications, the sec-
ond and the third challenges remain unsolved as the non-volatility
of PMEM is not utilized. Hence, using PMEM in its app direct mode
to store and process all data is a better option. Previous works [8,
14, 15, 37, 48, 62, 69] have shown that persistent memory program-
ming [29] is non-trivial and error-prone. Therefore, we developed
a PMEM-based in-memory data structure for FEDB to enable in-
PMEM data consistency and recoverability without using the tra-
ditional logs/snapshots persistence techniques.

4 FEDB
In this paper, we propose FEDB, an in-memory database engine
specifically designed to support online feature extraction.

FEDB Java/C++/Python Client

FE
Q
L
En

gi
ne Parser Optimizer Planner

Executor Executor Executor Executor…

LLVM IR

St
or
ag
e
En

gi
ne

FEQL commands/scripts

LLVM IR

Feature Vector

Zookeeper

Server

Tables
leader/follower

Logs
Snapshots

Server

Tables
leader/follower

Logs
Snapshots

Server

Tables
leader/follower

Logs
Snapshots

Figure 6: Architectural Overview of FEDB on DRAM+SSD

4.1 Design overview
FEDB is responsible for feature extraction in the workflow of AI-
powered OLDA systems. To facilitate and optimize feature extrac-
tion, we have designed a SQL-like language called FEQL (Feature
ExtractionQuery Language) which can be used to define all the fea-
tures that need to be extracted from the original structured (table-
formatted) data. As shown in Fig. 6, FEDB consists of two major
components, FEQL Engine which utilizes Low Level Virtual Ma-
chine (LLVM) [67] to parse, optimize and execute the given FEQL,
and Storage Engine which stores the actual table-formatted data
with timestamps. Given the execution plan, the executors in FEQL
Engine interact with the underlying storage engine to retrieve the
actual data and compute feature as the output.

FEQL is similar to the standard SQL in many ways. FEQL in-
troduces some new syntaxes to define and execute typical feature
extraction queries more efficiently. For instance, one of the key fea-
tures of FEQL is the ability to define multiple time windows in a
single query so that those TopN queries in multiple time windows
are no longer executed in each time window individually. We will
discuss this in more details in Sec. 4.2.

The underlying storage engine of FEDB adopts a distributed
leader/follower architecture to guarantee high availability (HA) of
data using tools like Zookeeper [24]. Note that Fig. 6 shows FEDB
with DRAM+SSD, which adopts a traditional persistence model
(logs and snapshots) to make data recoverable after system reboots.
We adopt a DRAM-based double-layered skiplist as the index to
make TopN queries in multiple time windows efficient. Further-
more, to address the drawbacks of using DRAM mentioned in the
previous section, we adopt PMEM and design a PMEM-based per-
sistent skiplist to replace the DRAM-based one in FEDB so that
data persistence can be achieved without using logs/snapshots on
SSDs. We will discuss the details of the storage engine in Sec. 4.3.

4.2 FEQL Engine
FEQL Engine of FEDB adopts the state-of-the-art query compila-
tion and execution techniques that utilizes the LLVM compiler [67]
to transform the query into assembler code. FEQL engine supports

803

not only the standard SQL-like commands and syntaxes like cre-
ate/drop tables, insert/delete records, projection, group by, etc., but
also allows User Defined Function (UDF) and User Defined Aggre-
gate Function (UDAF) in a similar way as MemSQL [43].

To better support real-time feature extraction, FEQL engine in-
troduces some new syntaxes and the corresponding optimizations.
Specifically, FEQL introduces a new TIME_WINDOW function
and allows multiple time windows to be defined in a single com-
mand. Note that this is different from the standard WINDOW
function in SQL, which defines a window of rows with a given
length around the current row to perform calculation/aggregation
across the set of data in the window [39]. For example, consider-
ing the table schema in Sec. 3.1, to find the Top3 values of catalog1
and catalog2, in the last 1 day/1 week for card_id D at the current
time, we can use a single FEQL query as follows:
SELECT TopN_Frequency(catalog1, 3) OVER w1,

TopN_Frequency(catalog1, 3) OVER w2,
TopN_Frequency(catalog2, 3) OVER w1,
TopN_Frequency(catalog2, 3) OVER w2
FROM table
TIME_WINDOW w1 as

(PARTITION BY table.card_id TIME_RANGE
BETWEEN 1d PRECEDING AND CURRENT TIME),

TIME_WINDOW w2 as
(PARTITION BY table.card_id TIME_RANGE
BETWEEN 1w PRECEDING AND CURRENT TIME)

WHERE table.card_id=D;
To optimize the performance of typical feature extraction queries

that involve multiple time windows, FEQL adopts an optimization
technique called time window reuse. Note that, in an FEQL query,
the largest time window always covers all the smaller ones. There-
fore, instead of processing each window one by one, FEQL only
scans the data once for the largest time window and calculates the
query result for all the time windows at the same time. Our ex-
perimental results showed that such an optimization significantly
reduces the feature extraction time for real-time features with a
large number of timewindows to explore. In addition, FEQL is also
capable of processing different columns (e.g. catalogX) in parallel.

4.3 Storage Engine
In this subsection, we present the storage engine of FEDB using
DRAM+SSD. We will present the PMEM-optimized storage engine
in Section 5.

4.3.1 DRAM-based Double-layered Skiplist. The in-memory
storage engine is mainly designed to optimize the performance of
two tasks, (1) storing timestamped table-formatted data and (2) re-
trieving data with given key and time range. We used a double-
layered skiplist as the core data structure to store all the data in
memory. As a well-known data structure for its simplicity and
intrinsic lock-free between read and write, the skiplist has been
widely integrated in many in-memory database systems such as
Redis [17] and MemSQL. The table-formatted data is defined by a
schema indicating the name and type of all the columns in a similar
way to that in a relational database. In addition, the schema also
defines which column(s) is/are timestamps and which column(s)
is/are used for time-windowed queries. More specifically, for each

First layer
Skiplist
(ordered by ‘key’) k1 k2 k3

…
…
…
… … … kn

Second layer
Skiplists
(ordered by ‘ts’) ts1 ts2 ts3

…
…
…
… … … tsn

‘row_data’
row1 row2 row3

… … … … … … rown

… …

SmartRef Persistent Data
in PMEM

Normal Pointer
in DRAM

L0

L1

Lmax…

L0

L1

Lmax…

Figure 7: In-memory Double-layered (Persistent) Skiplist

column the time-windowed queries have to be performed on, a
double-layered skiplist is constructed.The first layer uses the value
of the column as the key and the pointer to a second-layer skiplist
as the value. The second-layer skiplist stores the timestamps for
each value of the column as the key and the pointer to the row data
as the value. Thus, the time-windowed scan on a specific column
can be efficiently performed by searching the first-layer skiplist for
the specified ‘key’, followed by scanning the second-layer skiplist
for the given time window to locate the target ‘row_data’.

Fig. 7 (ignore the shading part of the figure at this moment) il-
lustrates an example of storing a table with one column named
key as the index column and another one named ts as the times-
tamp column. Note that if multiple index columns are defined in
the same table, only the double-layered skiplists are constructed
while the row_data is reused through the pointer in the second-
layer skiplist. This design of shared row_data is very important
to the memory space utilization as the number of columns that
the time-windowed queries are performed on can be very large in
OLDA application such as fraud detection.

4.3.2 SSD-basedPersistenceModel. FEDB adopts a persistence
model to make the data recoverable upon system restart by using
logs and snapshots, which can be found in almost all in-memory
databases such as Redis [17] and SAP HANA [18]. However, the
additional log writes have to be synced to the persistent storage,
which is quite slow on traditional HDDs and flash SSDs compared
to memory operations. Syncing logs more frequently can result
in a worse performance but less frequently may cause more data
loss when the system crashes. As FEDB is not required to support
transactions with full ACID properties, it allows users to configure
the time interval between two consecutive log syncing operations
to balance the performance and acceptable range of data loss. In
deployment, FEDB uses high-end SSDs to store the logs.

804

Co
re

 D
at

a S
tru

ct
ur

e
Pe

rs
ist

en
ce

 M
od

el

Original Naïve Our Approach

DRAM PMEM
(Memory Mode)

SSD SSD

Snapshots

PMEM
(App Direct Mode)

Persistent
Skip List

Persistent
Double-layered

Skip List

Volatile
Double-layered

Skip List

Volatile
Double-layered

Skip List

Snapshot

Log Log

Figure 8: Different Ways of Using PMEM in FEDB

5 PMEM-OPTIMIZED FEDB
We start by using PMEM with minimal modification in the code
of FEDB. Compared to DRAM+SSD-based storage engine (the left-
most subfigure in Fig. 8), using PMEM in Memory Mode as the
working memory for the core data structure (the middle subfigure
in Fig. 8) does not involve any code modification. Instead, a tool
provided by Intel (ipmctl [32]) is used to configure the PMEM to
make the operating system treat it as main memory. However, this
straightforward method still needs to maintain logs/snapshots on
SSD and does not utilize the non-volatility of PMEM. Using PMEM
in App Direct Mode and utilizing its non-volatility to create a new
storage engine makes it possible to guarantee data recoverability
without logs and snapshots. To achieve that, we implemented a
PMEM-based persistent skiplist, and integrate it into the double-
layered skiplist (the rightmost subfigure in Fig. 8). Our experimen-
tal results showed that , in comparison with the DRAM+SSD ap-
proach, this approach not only eliminates the negative performance
impact of syncing logs, but also achieves instant recovery upon
system restart.

5.1 PMEM-based Persistent Skiplist
Implementing a persistent skiplist for PMEM is non-trivial as it
requires additional logic to deal with the space management of
persistent memory and in-memory data consistency upon system
failure.The two main challenges in implementing a persistent data
structure are as follows:
• Atomic persistent memory allocation/release becomes

essential for the space management of persistent memory.
For example, the memory leak and dangling pointer prob-
lem may happen when system failure occur between allo-
cating the persistent memory space of an object and storing
its address persistently.
• Data consistency upon system failure becomes problem-

atic as most of the basic operations that modify in-memory
data structures cannot be done in a single CPU instruction.

As a result, when a system failure occurs, interrupting the
execution at any point in time may corrupt the entire data
structure. Therefore, extra effort must be made to guarantee
data consistency. Moreover, the memory store instruction
cannot guarantee that the data can be persisted in PMEM
unless special instructions - (CLFLUSHOPT or CLWB
followed by SFENSE, denoted as FLUSH) are executed.
Note that FLUSHing a memory object larger than 8 bytes
is not atomic [31].

We usePMDK and libpmemobj-cpp [33] from Intel to address
the first challenge by calling provided APIs to allocate/free per-
sistent memory atomically. Internally, PMDK keeps track of the
addresses of all the objects being allocated/freed in the persistent
memory so that it can undo/redo the interrupted operations during
recovery. It is still costly but saves a large amount of engineering
work to make pointer-based data structure persistent in PMEM. In
our implementation of persistent skiplist, we manually manage a
‘free list’ for the nodes of persistent skiplist to remove the alloca-
tion/release operations from the critical path of data processing.
As a result, we can benefit from the easy implementation using
PMDK without compromising the performance much.

There are two existing approaches to tackle the second chal-
lenge. The first is to implement the traditional logging/copy-on-
write (COW) algorithms within the data processing logic of the
user application itself. This approach poses the implementation
complexity to users, and also it can be error-prone. The second ap-
proach is to use the transaction support in PMDK that can guaran-
tee the atomicity of multiple memory operations, which uses COW
internally. Although both the logging/COW approaches are able
to guarantee the correctness, they are not efficient as both require
the inherent and extra write overhead. Therefore, our implementa-
tion of persistent skiplist adopts neither of them. Inspired by the
existing data structures for persistent memory [8, 15, 37, 48, 69],
we redesign the procedure of insertion, deletion and search in the
persistent skiplist to use only 8-byte atomic writes followed by a
FLUSH. By doing so, the data consistency can bemaintained upon
system failure without using expensive logging/COW.

CompareAndSwap(CAS) [66] technology is the key to main-
tain non-blocking execution in a single-writer-multi-reader sce-
nario for the persistent skiplist. However, if it operates in persis-
tent memory, we need to handle the possible inconsistency caused
by a write-after-read dependency where one thread persistently
writes new data computed/derived from the result of reading some
data that might not be persisted [65]. This can be solved by a flush-
on-read method: any read operations on such data must be pre-
ceded by a FLUSH.

To efficiently implement flush-on-read to make the CAS work
correctly on persistent memory, we leverage the vacant lower four
bits in a normal 64-bit pointer on a 64-bit machine [65]. We further
improve it by embedding both ‘deleted’ and ‘dirty’ bits into the spe-
cial pointer, denoted as SmartRef. SmartRef is essentially a 64-
bit unsigned integer (same size as the normal pointer), which uses
the lowest bit as ‘dirty’ bit and the second lowest one as ‘deleted’
bit. PersistRead() takes SmartRef as input. If it is marked dirty,
it will be FLUSHed with ‘dirty’ bit cleared.

805

Algorithm 1: RebuildUpperLevel
Input: ℎ𝑒𝑎𝑑
Output: 𝑠𝑢𝑐𝑐𝑒𝑠𝑠

1 for i=1:maxHeight-1 do
2 𝑐𝑢𝑟 [𝑖] ← ℎ𝑒𝑎𝑑 ;
3 end
4 𝑐𝑢𝑟0← ℎ𝑒𝑎𝑑 ;
5 while 𝑐𝑢𝑟0 ≠ 𝑡𝑎𝑖𝑙 do
6 𝑛𝑒𝑥𝑡0← PersistRead(𝑐𝑢𝑟0.𝑛𝑒𝑥𝑡 [0]);
7 for i=1:cur0.height-1 do
8 𝑐𝑢𝑟 [𝑖] .𝑛𝑒𝑥𝑡 [𝑖] ← 𝑛𝑒𝑥𝑡0;
9 𝑐𝑢𝑟 [𝑖] ← 𝑛𝑒𝑥𝑡0;

10 end
11 𝑐𝑢𝑟0← 𝑛𝑒𝑥𝑡0;
12 end
13 for i=1:maxHeight-1 do
14 𝑐𝑢𝑟 [𝑖] ← 𝑡𝑎𝑖𝑙 ;
15 end
16 return TRUE;

Given the fact that writes in PMEM is slower than that in DRAM,
we further optimize our PMEM-based persistent skiplist by reduc-
ing the number of writes on PMEM. As shown in Fig. 7, only the
next pointers (i.e. SmartRef) on level 0 and the actual data are
stored persistently in PMEM, while those on the remaining levels
are using normal pointers in DRAM. We also developed a recov-
ery procedure to rebuild them upon system failure, which scans
the skiplist via SmartRef on level 0 and relink the pointer on
the upper level according to the height of each node. The con-
cept of rebuilding-on-recovery has been widely adopted in other
data structures for persistent memory [69]. Algorithm 1 shows
the pseudo code of rebuilding the next pointers on upper levels
upon recovery. The steps involved are as follows: (1) initialize the
iterator-like structure cur[1..max_height-1], which represents
the node the iterator of each level (except level 0) points to (line
1-3); (2) traverse the skiplist through the next pointer on level 0
(cur0.next[0] where cur0 represents which node the iterator of
level 0 points to), for every cur0, re-link the next pointers of all the
levels between 1 and the height of cur0 to point to cur0.next[0]
(line 4-12); (3) and on reaching the tail in level 0, link the next
pointer of the last node on each level to the tail (line 13-15).

The procedure of search is similar to the standard DRAM-based
skiplist except (1) the execution of PersistRead() before entering
the target node and (2) ignoring the nodes marked as ‘toDelete’.
The removal procedure starts with marking the target node as
‘toDelete‘ persistently, then utilizesCAS to update the next point-
ers (SmartRef on level 0) of the preceding nodes from the top level
down to level 0.

The insertion starts with searching for the position to insert the
new node with the provided key-value pair. After finding the pre-
ceding and succeding node, the next pointers of the new node on
each level are linked to the succeeding node, then the next point-
ers of the preceding node on each level are updated to point to
the new node. Algorithm 2 shows the pseudo code of inserting a

Algorithm 2: Insert
Input: 𝐾,𝑉
Output: 𝑠𝑢𝑐𝑐𝑒𝑠𝑠

1 𝑓 𝑜𝑢𝑛𝑑 ← find(𝐾, 𝑝𝑟𝑒𝑑𝑠 [], 𝑠𝑢𝑐𝑐𝑠 []);
2 if (!found) then
3 𝑛𝑒𝑤_𝑛𝑜𝑑𝑒 ← GetFreeNodeAndInitial(𝑉);
4 𝑛𝑒𝑤_𝑛𝑜𝑑𝑒.𝑙𝑒𝑣𝑒𝑙 ← RandomHeight();
5 for i=0:level-1 do
6 AtomicStore(𝑛𝑒𝑤_𝑛𝑜𝑑𝑒.𝑛𝑒𝑥𝑡 [𝑖],

SmartRef(𝑠𝑢𝑐𝑐𝑠 [𝑖], 𝐹𝐴𝐿𝑆𝐸, 𝐹𝐴𝐿𝑆𝐸));
7 end
8 for i=0:level-1 do
9 while TRUE do
10 𝑝𝑟𝑒𝑑 ← 𝑝𝑟𝑒𝑑𝑠 [𝑖];
11 𝑠𝑢𝑐𝑐 ← 𝑠𝑢𝑐𝑐𝑠 [𝑖];
12 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 ← SmartRef(𝑠𝑢𝑐𝑐, 𝐹𝐴𝐿𝑆𝐸, 𝐹𝐴𝐿𝑆𝐸);
13 𝑑𝑖𝑟𝑡𝑦 ← (𝑖 == 0?𝑇𝑅𝑈𝐸 : 𝐹𝐴𝐿𝑆𝐸);
14 if CAS(pred.next[i], expected,

SmartRef(𝑛𝑒𝑤_𝑛𝑜𝑑𝑒, 𝐹𝐴𝐿𝑆𝐸,𝑑𝑖𝑟𝑡𝑦)) then
15 break;
16 end
17 if i=0 then
18 PersistRead(𝑝𝑟𝑒𝑑.𝑛𝑒𝑥𝑡 [𝑖]);
19 end
20 end
21 end
22 RemoveFromFreeList(𝑛𝑒𝑤_𝑛𝑜𝑑𝑒);
23 return TRUE;
24 end
25 return FALSE;

key-value pair, <K, V>, into the persistent skiplist. The steps in-
volved are: (1) locate the position to insert a new node withK, and
obtain the preceding/succeeding nodes at all levels through find()
(line 1); (2) callGetFreeNodeAndInitial() to get a free node (pre-
allocated via the make_persistent_atomic() API) from the free
list and initialize it with V, and the next pointers pointing to the
succeeding nodes (line 3-7); (3) starting from level 0 to top level, up-
date the next pointer of the preceding nodes at all levels to the new
node (line 8-21); (4) remove the new node from the free list (line
22). Note that whenCAS is done, only the SmartRef on level 0 in
the preceding node is marked as ‘dirty’.

6 EXPERIMENTAL RESULTS
In this section, we first present the performance of FEDB with
DRAM+SSD against two commercial in-memory database systems
named as DB-X and DB-Y under real-time feature extraction work-
loads.Thenwe evaluate the different ways of using PMEM in FEDB
under both micro benchmarks and a real-world fraud detection
workload from 4Paradigm.

806

Table 2: DBMS Used in This Paper

Name In-memory Storage Engine Log Storage

D-FEDB Volatile skiplist
in DRAM NVMe SSD

PM-FEDB Volatile skiplist
in PMEM (Memory Mode) NVMe SSD

PA-FEDB Persistent skiplist, All levels persist
in PMEM (App Direct Mode) N.A.

PO-FEDB Persistent skiplist, Only level 0 persisted
in PMEM (App Direct Mode) N.A.

DB-X Commercial in-memory database
in DRAM NVMe SSD

DB-Y Commercial in-memory database
in DRAM NVMe SSD

6.1 Experiment Setup
For each database server, we have 28 Cores 2.7 GHz Xeon Plat-
inum 8280L (2 sockets, 1.75MB/28MB/38.5MB for L1/L2/L3 caches
of each socket, respectively), 384 GB (12×32GB) DRAM and 1.5
TB (12×128GB) PMEM, and we use 750 GB Intel Optane SSD DC
P4800X as storage. The OS is CentOS-7 with kernel 5.1.9-1.el7. We
use another dedicated server connected with 100GbE network to
run the in-house benchmark tool based on JMH (Java Microbench-
mark Harness) [46] which communicates with different databases
through their JAVA client. The benchmark tool can either generate
synthetic feature extraction queries or replay the traces from real-
world feature extraction workloads in our fraud detection system.
All results shown are the average of 10 runs for each experiment.

All the configurations of the databases used in this section are
listed in Table 2. The server of the D-FEDB, DB-X, DB-Y keeps the
same hardware configuration mentioned above except that those
PMEM DIMMs are replaced by 32GB DRAM DIMMs (total 768 GB
DRAM per server). D-FEDB and PM-FEDB are the same in soft-
ware implementation but different in the memory used. PM-FEDB
uses PMEM in Memory Mode as the working memory while D-
FEDB uses DRAM. D-FEDB, PM-FEDB, DB-X and DB-Y use the de-
fault log and snapshot persistence model that is commonly found
in in-memory databases. Both log and snapshot files are stored in
the NVMe SSD with ext4 file system. PA-FEDB and PO-FEDB use
PMEM in App Direct Mode to store the data persistently without
log and snapshot. As shown in Fig. 7, PO-FEDB only FLUSHs the
level 0 in the persistent skiplist, while PA-FEDB FLUSHs all the
layers. The persistent skiplist is implemented using PMDK-1.7,
libpmemobj-cpp-1.8 and memkind-1.9.

Experiment outline: We first compare the performance of the D-
FEDB with the commercial in-memory databases DB-X and DB-Y
under simulated OLDA workloads (Sec. 6.2). Then we use D-FEDB
as a baseline to compare the performance of the storage engine of
different PMEM-based FEDB variants under synthetic workloads
such as put-only and scan-after-put (Sec. 6.3.1). Lastly, we use the
real-world fraud detection workload from 4Paradigm discussed in
Sec. 2.1 to compare the impact of using different FEDB variants in
terms of latency, recovery time and total cost (Sec. 6.3.2).

6.2 Comparison with Existing Database
In this section, we evaluate the performance of D-FEDB against
DB-X and DB-Y. We report the average latency normalized to the
fastest latency. The table schema is the same as shown in Fig. 4.The
table consists of card_id (varchar(20)), timestamps (bigint),C_[1..N]
(varchar(20)) and amount(double). C_1 to C_N stand for catalog 1
to catalog N, which are the columns ready for TopN queries. The
combination of (card_id, timestamps) is the primary key. To speed
up TopN queries, we create extra indexes for all the combinations
of (catalogX, timestamps). At the data preparation stage, we first
insert 2000 card_id from pk_1 to pk_2000, and for each card_id, we
insert 1000 records with a 100 ms interval. The value of the catalog
column is generated from the set {“group1”,“group2”,…,“group10”}
randomly. When starting the test, we first insert a new record with
a random card_id as well as a series of random values for C_1 to
C_N columns. Then we execute the same TopN feature extraction
workload over multiple time windows (described in Sec. 3.1). We
consider both the insertion and a series of the TopN queries as an
entire transaction extraction procedure, and report its latency.

We performed two experiments. For the first experiment, we
fix the number of catalogs to 2 (catalog1 and catalog2 only) and
execute TopN queries over different number of time window. As
show in Fig. 9, D-FEDB consistently outperforms both DB-X and
DB-Y when the number of time windows increases from 1 to 8.
In particular, the latency (1 time window) of DB-X and DB-Y is
3.25× and 8.79× that of the D-FEDB’s latency, respectively.The la-
tency gap further increases to 4.74×, 6.94×, 8.73× (for DB-X) and
10.83×, 18.76×, 17.63× (for DB-Y) when the number of time win-
dow is increased to 2, 4 and 8, respectively. There are two factors
that improved the performance of FEDB. First, the double-layered
skiplist storage engine is optimized for the queries over a series
of time windows. More importantly, the FEQL Engine only have
to scan the data once over the largest time window and calculates
the query result for all the time windows. That is the reason why

1.00 1.32 1.76 2.733.25
6.26

12.22

23.82

8.79

14.29

33.02

48.14

0

10

20

30

40

50

60

1 2 4 8

Number of Time Windows

D-FEDB DB-X DB-Y

N
o
rm

al
iz
e
d
La
te
n
cy

Figure 9: Latency Comparison of On-line Feature Extraction
over Varied Number of Time Windows

807

1.00 1.66 2.95 5.427.64 15.25
30.01

59.8712.79 32.83

131.90

454.45

0

50

100

150

200

250

300

350

400

450

500

1 2 4 8

Number of Catalogs

D-FEDB DB-X DB-Y

N
o
rm

al
iz
e
d
La
te
n
cy

Figure 10: Latency Comparison of On-line Feature Extrac-
tion over Different Kinds of Keys

the more time windows are involved, the bigger the performance
advantage D-FEDB gains.

In the second experiment, we fix the number of timewindows to
10, and change the number of catalogs from 1 to 8. As described in
Sec. 4.3, FEDB creates different double-layered skiplist for each in-
dex.Thus the TopN queries of different catalogX can execute in par-
allel through different double-layered skiplist indexes. As shown
in Fig. 10, DB-X has 7.64×–11.05× higher latency compared with
D-FEDB, and DB-Y performs worse with 12.79× – 83.85× longer
latency than D-FEDB, respectively. On the other hand, the latency
of D-FEDB only increases 66%, 195% and 442% when the number
of the catalogs increases to 2, 4 and 8, respectively.

6.3 PMEM Optimized FEDB
In this section, we evaluate the effectiveness of using PMEM in
FEDB. We use D-FEDB as a baseline to evaluate the performance
of the different variants of the PMEM-based FEDB cluster. Since
latency is the main performance metric in OLDA pipelines, we
present the 50th/99th/9999th percentile latency [49] (denoted as
TP-50/TP-99/TP-9999), normalized to the fastest latency.

6.3.1 Micro-benchmark. To focus on the effect obtained from
optimizing of the storage engine, we use direct operation com-
mands instead of the FEQL interface to compare the performance
of four FEDB variants summarized in Table 2. For each request
for on-line inference in the OLDA systsem, FEDB performs a new
record insertion followed by a large number of concurrent scans in
the previous time windows. When the OLDA operations are pass
to the storage engine level, it is converted into a series of put and
scan operations. The latency of a put operation is important be-
cause the scan operations have to wait until freshly generated data
is put into the database. Therefore, we first use a micro benchmark
to measure the latency of the put operation. For a fair compari-
son, we preloaded about 400GB of data into the database before
the measurement. The schema we use has a 8-byte key, a 100-byte

0

0.5

1

1.5

2

2.5

3

1 2 4 8 16 32 64 128

N
O

RM
AL

IZ
ED

 T
P-

50
 L

AT
EN

CY

OF THREADS

D-FEDB PM-FEDB PA-FEDB PO-FEDB

(a) TP-50 Latency of Put.

0

5

10

15

20

25

30

1 2 4 8 16 32 64 128

N
O

RM
AL

IZ
ED

 T
P-

99
99

 L
AT

EN
CY

OF THREADS

D-FEDB PM-FEDB PA-FEDB PO-FEDB

(b) TP-9999 Latency of Put.

0

5

10

15

20

25

1 2 4 8 16 32 64 128

N
O

RM
AL

IZ
ED

 T
P-

99
99

 L
AT

EN
CY

OF THREADS

D-FEDB PM-FEDB PA-FEDB PO-FEDB

(c) TP-9999 Latency of Put+Scan.

Figure 11: Performance Comparison of Different FEDB’s
Variants under Micro-benchmark Workloads

808

1.00 1.29 1.26 1.25

37.49

0

5

10

15

20

25

30

35

40

45

50

D-FEDB PM-FEDB PA-FEDB PO-FEDB DB-X DB-Y

Types of Databases

N
o
rm

al
iz
e
d
TP

-5
0
La
te
n
cy

610.94

Figure 12: Latency under Real-world Workloads On Differ-
ent DBMS

value and a 8-byte time stamp (ts). By default, every table has eight
partitions and no replication.

Fig. 11a shows the TP-50 latency of put operations with varied
number of threads. As expected, due to the performance advantage
of DRAM, D-FEDB outperforms the other three configurations. In
most cases, PM-FEDB performs the worst and is unstable because
(1) the preloaded table has occupied all the DRAM cache for PMEM
in memory mode and the put operation may trigger the data to
be flushed from DRAM cache to PMEM frequently, and (2) it still
needs to sync logs to the SSD periodically.

On the other hand, the TP-9999 latency of put in both PA-FEDB
and PO-FEDB outperforms the other two configurations when the
number of threads is larger than 8 as shown in Fig. 11b. Specif-
ically, compared to D-FEDB and PM-FEDB, PA-FEDB can reduce
the TP-9999 latency by up to 36.8% and 47.3%, respectively. In addi-
tion, since the data is only persisted in the bottom level, PO-FEDB
can further reduce the TP-9999 latency by up to 48.6% and 57.1%,
respectively. Meanwhile, PM-FEDBwith theworst performance in-
dicates that when persistency is required, utilizing PMEM in App
Direct Mode is a more efficient choice.

To mimic the access pattern of AI-powered OLDA applications,
we also measure the latency of a combined operation that consists
of a put followed by a scan. As shown in Fig. 11c, although D-FEDB
has the best scan performance due to the advantage DRAM has
over PMEM in read performance, PO-FEDB still performs the best
if we consider the combined operation especially when the number
of threads exceeds 16. The TP-9999 latency can be reduced by as
much as up to 35.6% compared to D-FEDB.

6.3.2 Real-world Application Workload. We use a trace from
the fraud detection application (mentioned in Sec. 2.1) to bench-
mark our FEDB variants. FEDB applies three replicas and the to-
tal size of in-memory data is around 10 TB. We deploy two FEDB
clusters: DRAM cluster and PMEM cluster. The hardware configu-
ration of both cluster is the same as mentioned in Sec. 6.1. For a fair

comparison, we reserve 128 GB DRAM in each server in both clus-
ters for the operating system, etc. We consider the total latency of
one put operation followed by multiple time-windowed scans.

There are some interesting observations observed from the real-
world workload. First, data access can be temporally out of bal-
ance. The frequency of fraud detection requests increases signifi-
cantly before or during some public holidays as well as during the
lunch/dinner time. Second, a large number of detection requests
reach FEDB simultaneously, and it generates a series of bursts that
may cause a longer waiting time. Most of the transactions with
longer latency are issued during such “peak hour”. Third, more
than 90% of the operations are read, while more than 80% of them
are time-windowed access in this trace.

We test the fraud detection workload to evaluate on-line fea-
ture extraction latency. As shown in Fig. 12, D-FEDB yields the
shortest latency, with both the PM-FEDB and the PA-FEDB achiev-
ing comparable performance. All variants of the FEDB are much
faster than DB-X and DB-Y by approximately 30× and 600×, re-
spectively. To quantify the effectiveness of using PMEM to opti-
mize the tail latency, we focus on evaluating the performance of
the different variants of FEDB. Fig. 13 shows the normalized TP-
50/TP-90/TP-9999 latency comparison among four FEDB variants.
In particular, TP-9999, which represents the worst-case response
time, is 8.24× longer than TP-99 and 15.33× longer than TP-50
on D-FEDB, respectively. For TP-50 and TP-99, D-FEDB shows the
best performance similar to those in micro-benchmark. PO-FEDB
and PA-FEDB are 25-29% slower than D-FEDB in terms of TP-50
and TP-99, but they both outperform D-FEDB in TP-9999 latency.
Specifically, PO-FEDB shows the shortest TP-9999 latency which
is 19.7% faster than D-FEDB. Due to the additional FLUSH on the
upper layer pointers in the persistent skiplist, PA-FEDB performs
slightly worse than PO-FEDB but is still 17.2% faster than D-FEDB.

1.00

1.86

15.33

1.29

2.50

19.13

1.26

2.40

12.68

1.25

2.35

12.30

0 5 10 15 20 25

TP-50

TP-99

TP-9999

NORMALIZED LATENCY

PO-FEDB PA-FEDB PM-FEDB D-FEDB

Figure 13: Tail Latency of Different FEDB’s Variants under
Real-world Workloads

809

3,429.09

373.33

68.32

43.68

25.63

1.07

0 500 1000 1500 2000 2500 3000 3500

PM-FEDB

D-FEDB

PO-FEDB
(DEFRAGMENTATION)

PA-FEDB
(DEFRAGMENTATION)

PO-FEDB

PA-FEDB

Recovery Time (minutes)

Figure 14: Recovery Time under Real-world Workloads

The optimization of TP-9999 significantly enhances the user expe-
rience, especially during the peak hours. On the other hand, PM-
FEDB has the worst performance, which has 24.8-34.4% longer la-
tency compared with D-FEDB in all kinds of latency. This suggests
that using PMEM in a naïve way does not benefit performance.

Another benefit of using PMEM in App Direct Mode in FEDB is
the much shorter recovery time upon system failure. Fig. 14 shows
the recovery times of the six configurations. We added an option
to execute PMEM space defragmentation after failure for PA-FEDB
and PO-FEDB. D-FEDB and PM-FEDB have much longer recovery
time compared with PA-FEDB and PO-FEDB because they have
to load all the data from the snapshot on the SSD and replay the
log. PM-FEDB requires 9.18× longer recovery time compared with
D-FEDB. Since each PMEM server in the cluster has significantly
more memory, PM-FEDB has to load more data from the SSD. This
longer recovery time is also due to the inferior write performance
of PMEM compared to DRAM. PA-FEDB is able to save 99.7% recov-
ery time because it persists all the data in PMEM. As mentioned in
Sec. 5.1, PO-FEDB needs to rebuild the pointer on the upper level
of each node by scanning all the nodes through the pointers on
level 0 of the skiplist.Thus, the recovery time of PO-FEDB is longer
than that of PA-FEDB. Although PMEM space defragmentation in
PO-FEDB and PA-FEDB is time consuming, the recovery time of
both PO-FEDB (with defragmentation) and PA-FEDB (with defrag-
mentation) can still be reduced by 81.7% and 88.3% compared to
D-FEDB, respectively.

We also compare the overall cost between the original FEDB and
the PMEM-optimized solution. As shown in Table 3, after exclud-
ing the DRAM space reserved for the operating system, etc, our
PMEM server has 1.5 TB of PMEM and 256 GB of DRAM to store
all of FEDB’s data including both in PMEM and in DRAM (such
as the upper layer of the skiplist). On the other hand, the DRAM
server has 640 GB DRAM after reserving the same DRAM space
as PMEM server. When deployed for fraud detection using DRAM
server, the OLDA system will need sixteen DRAM servers to store

Table 3: Cost Comparison: DRAM vs PMEM

DRAM Server PMEM Server
Memory Capacity 768 GB 1920 GB
DRAM 24×32GB 12×32GB
DRAM reserved for OS, etc 128GB 128GB
PMEM N.A. 12×128GB
of Servers Needed for
the real-world trace 16 6

Normalized Cost 1 41.6%

all the tens of TB of in-memory data. The number of servers de-
creases to six if using PMEM servers. Both the lower dollar per
GB of PMEM as well as the cost decreasing due to involving fewer
servers (such as less power cost per year, etc) bring the cost reduc-
tion of PMEM server solution. PMEM server solution brings an
overall cost that is 58.4% lower than the DRAM solution. Similar
cost-saving result has been published previously [30].

7 CONCLUSIONS AND FUTUREWORK
In this paper, we have described and analyzed the entire workflow
of AI-based OLDA applications using the example of a fraud detec-
tion pipeline from 4Paradigm. We have identified real-time feature
extraction as the key performance bottleneck in OLDA applica-
tions. This prompted us to propose FEDB, a distributed in-memory
database system designed to efficiently support real-time feature
extraction in OLDA pipelines. FEDB can be one to two orders of
magnitude faster than state-of-the-art in-memory databases under
the real-world fraud detection workloads. To further reduce the
total ownership cost of FEDB, we propose taking advantage of In-
tel’s OptaneDCPersistentMemoryModule (PMEM), and extended
FEDB with a PMEM-optimized persistent skiplist. Our experimen-
tal results show that PMEM-based FEDB can shorten the tail la-
tency up to 19.7%, reduce the recovery time up to 99.7%, and save
up to 58.4% of the total cost of OLDA system compared to FEDB
using DRAM+SSD.

We are currently working on preparing a utility library to allow
users to use our persistent skiplist1. Meanwhile, we are also work-
ing on integrating SparkSQL with FEDB2. This will allow Spark-
SQL users to use FEDB to seamlessly accelerate their AI-powered
applications.

REFERENCES
[1] Paul Alcorn. 2019. Intel Optane DIMM Pricing. https://www.tomshardware.

com/news/intel-optane-dimm-pricing-performance,39007.html. Last accessed
on 02-July-2020.

[2] Alibabacloud. 2019. Key Concepts and Features of Time Series Databases.
https://www.alibabacloud.com/blog/key-concepts-and-features-of-time-
series-databases_594734 Last accessed on 02-July-2020.

[3] Salem Alqahtani and Murat Demirbas. 2019. Performance Analysis and Com-
parison of Distributed Machine Learning Systems. arXiv:1909.02061 (2019).

[4] Mihnea Andrei, Christian Lemke, Günter Radestock, Robert Schulze, Carsten
Thiel, Rolando Blanco, Akanksha Meghlan, Muhammad Sharique, Sebastian
Seifert, Surendra Vishnoi, et al. 2017. SAP HANA adoption of non-volatile mem-
ory. Proceedings of the VLDB Endowment 10, 12 (2017), 1754–1765.

[5] Raja Appuswamy, Manos Karpathiotakis, Danica Porobic, and Anastasia Aila-
maki. 2017. The case for heterogeneous HTAP. In 8th Biennial Conference on
Innovative Data Systems Research.

1https://github.com/4paradigm/pmemstore
2https://github.com/4paradigm/SparkSQLWithFeDB

810

https://www.tomshardware.com/news/intel-optane-dimm-pricing-performance,39007.html
https://www.tomshardware.com/news/intel-optane-dimm-pricing-performance,39007.html
https://www.alibabacloud.com/blog/key-concepts-and-features-of-time-series-databases_594734
https://www.alibabacloud.com/blog/key-concepts-and-features-of-time-series-databases_594734

[6] Jason Arnold, Boris Glavic, and Ioan Raicu. 2019. A High-Performance Dis-
tributed Relational Database System for Scalable OLAP Processing. In 2019 IEEE
Int. Parallel and Distributed Processing Symposium (IPDPS). IEEE, 738–748.

[7] Joy Arulraj. 2019. Data Management on Non-Volatile Memory. In Proceedings of
the 2019 International Conference on Management of Data (SIGMOD ’19). 1114.

[8] Joy Arulraj, Justin Levandoski, Umar Farooq Minhas, and Per-Ake Larson. 2018.
BzTree: A high-performance latch-free range index for non-volatile memory.
Proceedings of the VLDB Endowment 11, 5 (2018), 553–565.

[9] Joy Arulraj and Andrew Pavlo. 2017. How to build a non-volatile memory data-
base management system. In Proceedings of the 2017 ACM International Confer-
ence on Management of Data (SIGMOD ’17). 1753–1758.

[10] Joy Arulraj and Andrew Pavlo. 2017. How to Build a Non-Volatile Memory Data-
base Management System. In Proceedings of the 2017 ACM International Confer-
ence on Management of Data (SIGMOD ’17). 1753–1758. https://db.cs.cmu.edu/
papers/2017/p1753-arulraj.pdf

[11] Joy Arulraj and Andrew Pavlo. 2019. Non-volatile memory database manage-
ment systems. Synthesis Lectures on Data Management 11, 1 (2019), 1–191.

[12] Andrew Chen, Andy Chow, Aaron Davidson, Arjun DCunha, Ali Ghodsi,
Sue AnnHong, Andy Konwinski, ClemensMewald, SiddharthMurching, Tomas
Nykodym, et al. 2020. Developments in MLflow: A System to Accelerate the Ma-
chine Learning Lifecycle. In Proceedings of the Fourth International Workshop on
Data Management for End-to-End Machine Learning. 1–4.

[13] Cheng Chen, Qingsong Wei, Weng-Fai Wong, and Chundong Wang. 2019. NV-
Journaling: Locality-Aware Journaling Using Byte-Addressable Non-Volatile
Memory. IEEE Trans. Comput. 69, 2 (2019), 288–299.

[14] Cheng Chen, Jun Yang, Qingsong Wei, Chundong Wang, and Mingdi Xue. 2016.
Fine-grained metadata journaling on NVM. In 2016 32nd Symposium on Mass
Storage Systems and Technologies (MSST). IEEE, 1–13.

[15] Shimin Chen and Qin Jin. 2015. Persistent b+-trees in non-volatile mainmemory.
Proceedings of the VLDB Endowment 8, 7 (2015), 786–797.

[16] Youmin Chen, Youyou Lu, Fan Yang, QingWang, YangWang, and Jiwu Shu. 2020.
FlatStore: An Efficient Log-Structured Key-Value Storage Engine for Persistent
Memory. In Proceedings of the Twenty-Fifth International Conference on Architec-
tural Support for Programming Languages and Operating Systems. 1077–1091.

[17] Salvatore Sanfilippo et. al. 2009. Redis. https://redis.io/. Last accessed on 02-
July-2020.

[18] Franz Färber, Sang Kyun Cha, Jürgen Primsch, Christof Bornhövd, Stefan Sigg,
andWolfgang Lehner. 2012. SAP HANA database: data management for modern
business applications. ACM Sigmod Record 40, 4 (2012), 45–51.

[19] Shen Gao, Bingsheng He, and Jianliang Xu. 2015. Real-Time In-Memory Check-
pointing for Future Hybrid Memory Systems. In Proceedings of the 29th ACM on
International Conference on Supercomputing (Newport Beach, California, USA)
(ICS ’15). Association for Computing Machinery, New York, NY, USA, 263–272.

[20] Google. 2019. In-Memory Database. https://cloud.google.com/blog/topics/
partners/available-first-on-google-cloud-intel-optane-dc-persistent-memory
Last accessed on 02-July-2020.

[21] The TANEJA Group. 2012. number of nines availability of systems. http://
tanejagroup.com/files/Compellent_TG_Opinion_5_Nines_Sept_20121.pdf Last
accessed on 02-July-2020.

[22] Shohedul Hasan, Saravanan Thirumuruganathan, Jees Augustine, Nick Koudas,
and Gautam Das. 2020. Deep Learning Models for Selectivity Estimation of
Multi-Attribute Queries. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’20). 1035–1050.

[23] Gui Huang, Xuntao Cheng, Jianying Wang, Yujie Wang, Dengcheng He, Tiey-
ing Zhang, Feifei Li, Sheng Wang, Wei Cao, and Qiang Li. 2019. X-Engine: An
optimized storage engine for large-scale E-commerce transaction processing. In
Proceedings of the 2019 Int. Conference on Management of Data. 651–665.

[24] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin Reed. 2010.
ZooKeeper: Wait-free Coordination for Internet-scale Systems.. In USENIX an-
nual technical conference, Vol. 8. Boston, MA, USA.

[25] IDC. 2019. IDC marketscape: Manufacturer evaluation of China machine learn-
ing development platform 2019. https://www.idc.com/getdoc.jsp?containerId=
CHC45389019 Last accessed on 02-July-2020.

[26] Timescale Incorporated. 2019. TimescaleDB. https://github.com/timescale/
timescaledb Last accessed on 02-July-2020.

[27] InfluxData. 2019. influxDB. https://www.influxdata.com/. Last accessed on
02-July-2020.

[28] Intel. 2015. Intel® Optane™ DC persistent memory. ”https://www.intel.
com/content/www/us/en/architecture-and-technology/optane-dc-persistent-
memory.html. Last accessed on 02-July-2020.

[29] Intel. 2015. Pmem.io. https://pmem.io/libpmemobj-cpp/, Last accessed on 26-
January-2020.

[30] Intel. 2019. The Challenge of Keeping up with data. https://www.intel.
com/content/dam/www/public/us/en/documents/product-briefs/optane-dc-
persistent-memory-brief.pdf) Last accessed on 02-July-2020.

[31] Intel. 2019. Introduction to programming for persistent memory. https://
github.com/pmemhackathon/2019-11-08/blob/master/PMEM_INTRO.pdf Last
accessed on 02-July-2020.

[32] Intel. 2019. Ipmctl. https://github.com/intel/ipmctl. Last accessed on 02-July-
2020.

[33] Intel. 2019. libpmemobj. https://github.com/pmem/libpmemobj-cpp/, Last ac-
cessed on 02-July-2020.

[34] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman
Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R Dulloor, et al.
2019. Basic performance measurements of the intel optane DC persistent mem-
ory module. arXiv preprint arXiv:1903.05714 (2019).

[35] Tirthankar Lahiri, Shasank Chavan, Maria Colgan, Dinesh Das, Amit Ganesh,
Mike Gleeson, Sanket Hase, Allison Holloway, Jesse Kamp, Teck-Hua Lee, et al.
2015. Oracle database in-memory: A dual format in-memory database. In 2015
IEEE 31st International Conference on Data Engineering. IEEE, 1253–1258.

[36] Berti-Equille Laure, Bonifati Angela, and Milo Tova. 2018. Machine learning to
data management: A round trip. In 2018 IEEE 34th International Conference on
Data Engineering (ICDE). IEEE, 1735–1738.

[37] Se Kwon Lee, KHyun Lim,Hyunsub Song, BeomseokNam, and SamHNoh. 2017.
{WORT}: Write Optimal Radix Tree for Persistent Memory Storage Systems. In
15th USENIX Conference on File and Storage Technologies (FAST 17). 257–270.

[38] Yunseong Lee, Alberto Scolari, Byung-Gon Chun, Marco Domenico Santambro-
gio, Markus Weimer, and Matteo Interlandi. 2018. PRETZEL: Opening the Black
Box of Machine Learning Prediction Serving Systems. In 13th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI 18). 611–626.

[39] Viktor Leis, Kan Kundhikanjana, Alfons Kemper, and Thomas Neumann. 2015.
Efficient Processing of Window Functions in Analytical SQL Queries. Proceed-
ings of the VLDB Endowment 8, 10 (2015), 1058–1069.

[40] Baotong Lu, Xiangpeng Hao, TianzhengWang, and Eric Lo. 2020. Dash: scalable
hashing on persistent memory. arXiv preprint arXiv:2003.07302 (2020).

[41] Yao Lu, Aakanksha Chowdhery, Srikanth Kandula, and Surajit Chaudhuri. 2018.
Accelerating machine learning inference with probabilistic predicates. In Pro-
ceedings of the 2018 International Conference on Management of Data (SIGMOD
’18). 1493–1508.

[42] Darko Makreshanski, Jana Giceva, Claude Barthels, and Gustavo Alonso. 2017.
BatchDB: Efficient isolated execution of hybrid OLTP + OLAP workloads for
interactive applications. In Proceedings of the 2017 ACM International Conference
on Management of Data (SIGMOD ’17). 37–50.

[43] MemSQL. 2013. https://www.memsql.com/, Last accessed on 02-July-2020.
[44] Microsoft. Oct 30, 2018. Windows Server 2019 with Intel® Optane™ DC persistent

memory. https://techcommunity.microsoft.com/t5/Storage-at-Microsoft/The-
new-HCI-industry-record-13-7-million-IOPS-with-Windows/ba-p/428314
Last accessed on 02-July-2020.

[45] MySQL. 1995. https://www.mysql.com/, Last accessed on 02-July-2020.
[46] OpenJDK. 2013. https://openjdk.java.net/projects/code-tools/jmh/, Last ac-

cessed on 02-July-2020.
[47] Oracle. Sep 16, 2019. Oracle Database with Intel Optane DC Persistent

Memory. https://www.oracle.com/corporate/pressrelease/oow19-oracle-intel-
partner-optane-exadata-091619.html Last accessed on 02-July-2020.

[48] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and Wolfgang
Lehner. 2016. FPTree: A hybrid SCM-DRAM persistent and concurrent B-tree
for storage class memory. In Proceedings of the 2016 International Conference on
Management of Data (SIGMOD ’16). ACM, 371–386.

[49] Top percentile. 2019. TP-X. https://support.huaweicloud.com/intl/en-us/
productdesc-apm/apm_06_0002.html. Last accessed on 02-July-2020.

[50] Neoklis Polyzotis, Sudip Roy, Steven Euijong Whang, and Martin Zinkevich.
2018. Data lifecycle challenges in production machine learning: a survey. ACM
SIGMOD Record 47, 2 (2018), 17–28.

[51] Georgios Psaropoulos, Ismail Oukid, Thomas Legler, Norman May, and Anas-
tasia Ailamaki. 2019. Bridging the latency gap between NVM and DRAM for
latency-bound operations. In Proceedings of the 15th International Workshop on
Data Management on New Hardware. ACM.

[52] Alexander Ratner, DanAlistarh, GustavoAlonso, DavidGAndersen, Peter Bailis,
Sarah Bird, Nicholas Carlini, Bryan Catanzaro, Eric Chung, Bill Dally, et al. 2019.
SysML: The New Frontier of Machine Learning Systems. (2019).

[53] Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and
Christopher Ré. 2017. Snorkel: Rapid training data creation with weak supervi-
sion. Proceedings of the VLDB Endowment 11, 3, 269.

[54] Aunn Raza, Periklis Chrysogelos, Angelos Christos Anadiotis, and Anastasia Ail-
amaki. 2020. Adaptive HTAP through Elastic Resource Scheduling. In Proceed-
ings of the 2020 ACM SIGMOD International Conference on Management of Data
(SIGMOD ’20). 2043–2054.

[55] Theodoras Rekatsinas, Sudeepa Roy,Manasi Vartak, Ce Zhang, and Neoklis Poly-
zotis. 2019. Opportunities for data management research in the era of horizontal
AI/ML. Proceedings of the VLDB Endowment 12, 12 (2019), 2323–2323.

[56] Babak Salimi, Corey Cole, Peter Li, Johannes Gehrke, and Dan Suciu. 2018.
HypDB: a demonstration of detecting, explaining and resolving bias in OLAP
queries. Proceedings of the VLDB Endowment 11, 12 (2018), 2062–2065.

[57] Maximilian Schleich, Dan Olteanu, Mahmoud Abo Khamis, Hung Q Ngo, and
XuanLong Nguyen. 2019. A layered aggregate engine for analytics workloads.

811

https://db.cs.cmu.edu/papers/2017/p1753-arulraj.pdf
https://db.cs.cmu.edu/papers/2017/p1753-arulraj.pdf
https://redis.io/
https://cloud.google.com/blog/topics/partners/available-first-on-google-cloud-intel-optane-dc-persistent-memory
https://cloud.google.com/blog/topics/partners/available-first-on-google-cloud-intel-optane-dc-persistent-memory
http://tanejagroup.com/files/Compellent_TG_Opinion_5_Nines_Sept_20121.pdf
http://tanejagroup.com/files/Compellent_TG_Opinion_5_Nines_Sept_20121.pdf
https://www.idc.com/getdoc.jsp?containerId=CHC45389019
https://www.idc.com/getdoc.jsp?containerId=CHC45389019
https://github.com/timescale/timescaledb
https://github.com/timescale/timescaledb
https://www.influxdata.com/
"https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
"https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
"https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://pmem.io/libpmemobj-cpp/
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-dc-persistent-memory-brief.pdf)
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-dc-persistent-memory-brief.pdf)
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-dc-persistent-memory-brief.pdf)
https://github.com/pmemhackathon/2019-11-08/blob/master/PMEM_INTRO.pdf
https://github.com/pmemhackathon/2019-11-08/blob/master/PMEM_INTRO.pdf
https://github.com/intel/ipmctl
https://github.com/pmem/libpmemobj-cpp/
https://www.memsql.com/
https://techcommunity.microsoft.com/t5/Storage-at-Microsoft/The-new-HCI-industry-record-13-7-million-IOPS-with-Windows/ba-p/428314
https://techcommunity.microsoft.com/t5/Storage-at-Microsoft/The-new-HCI-industry-record-13-7-million-IOPS-with-Windows/ba-p/428314
https://www.mysql.com/
https://openjdk.java.net/projects/code-tools/jmh/
https://www.oracle.com/corporate/pressrelease/oow19-oracle-intel-partner-optane-exadata-091619.html
https://www.oracle.com/corporate/pressrelease/oow19-oracle-intel-partner-optane-exadata-091619.html
https://support.huaweicloud.com/intl/en-us/productdesc-apm/apm_06_0002.html
https://support.huaweicloud.com/intl/en-us/productdesc-apm/apm_06_0002.html

In Proceedings of the 2019 International Conference on Management of Data (SIG-
MOD ’19). 1642–1659.

[58] Ji Sun, Zeyuan Shang, Guoliang Li, Dong Deng, and Zhifeng Bao. 2017. Dima:
A distributed in-memory similarity-based query processing system. Proceedings
of the VLDB Endowment 10, 12 (2017), 1925–1928.

[59] Tracy Tsai. 2019. Competitive Landscape: AI Startups in China. Technical Report.
Stamford, USA.

[60] Alexander van Renen, Viktor Leis, Alfons Kemper, Thomas Neumann, Takushi
Hashida, Kazuichi Oe, Yoshiyasu Doi, Lilian Harada, and Mitsuru Sato. 2018.
Managing Non-Volatile Memory in Database Systems. In Proceedings of the 2018
International Conference on Management of Data (Houston, TX, USA) (SIGMOD
’18). ACM, New York, NY, USA, 1541–1555.

[61] Manasi Vartak, JoanaM F. da Trindade, SamuelMadden, andMatei Zaharia. 2018.
Mistique: A system to store and query model intermediates for model diagno-
sis. In Proceedings of the 2018 International Conference on Management of Data
(SIGMOD ’18). 1285–1300.

[62] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, Roy H Camp-
bell, et al. 2011. Consistent and Durable Data Structures for Non-Volatile Byte-
Addressable Memory.. In FAST, Vol. 11. 61–75.

[63] Chundong Wang, Sudipta Chattopadhyay, and Gunavaran Brihadiswarn. 2019.
Crash recoverable ARMv8-oriented B+-tree for byte-addressable persistent
memory. In Proceedings of the 20th ACM SIGPLAN/SIGBED International Con-
ference on Languages, Compilers, and Tools for Embedded Systems. 33–44.

[64] ChundongWang, QingsongWei, LingkunWu, SiboWang, Cheng Chen, Xiaokui
Xiao, Jun Yang,Mingdi Xue, and Yechao Yang. 2018. Persisting RB-tree intoNVM
in a consistency perspective. ACM Trans. on Storage (TOS) 14, 1 (2018), 1–27.

[65] Tianzheng Wang, Justin Levandoski, and Per-Ake Larson. 2018. Easy lock-free
indexing in non-volatile memory. In 2018 IEEE 34th International Conference on
Data Engineering (ICDE). IEEE, 461–472.

[66] Wikipedia. 2019. Compare-and-swap. https://en.wikipedia.org/wiki/Compare-
and-swap Last accessed on 02-July-2020.

[67] Wikipedia. 2019. LLVM. https://en.wikipedia.org/wiki/Click-through_rate Last
accessed on 02-July-2020.

[68] Jian Xu and Steven Swanson. 2016. {NOVA}: A Log-structured File System for
Hybrid Volatile/Non-volatile Main Memories. In 14th USENIX Conference on File
and Storage Technologies ({FAST} 16). 323–338.

[69] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong Yong, and
Bingsheng He. 2015. NV-Tree: reducing consistency cost for NVM-based single
level systems. In 13th USENIX Conference on File and Storage Technologies (FAST
15). 167–181.

[70] Luo Yuanfei, Wang Mengshuo, Zhou Hao, Yao Quanming, Tu WeiWei, Chen
Yuqiang, Yang Qiang, and Dai Wenyuan. 2019. AutoCross: Automatic Fea-
ture Crossing for Tabular Data in Real-World Applications. arXiv preprint
arXiv:1904.12857 (2019).

[71] Chaoqun Zhan, Maomeng Su, Chuangxian Wei, Xiaoqiang Peng, Liang Lin,
Sheng Wang, Zhe Chen, Feifei Li, Yue Pan, Fang Zheng, et al. 2019. AnalyticDB:
real-time OLAP database system at Alibaba cloud. Proceedings of the VLDB En-
dowment 12, 12 (2019), 2059–2070.

[72] Yu Zhang, Shan Wang, Jiaheng Lu, et al. 2018. Fusion OLAP: Fusing the Pros
of MOLAP and ROLAP Together for In-memory OLAP. IEEE Transactions on
Knowledge and Data Engineering 31, 9 (2018), 1722–1735.

812

https://en.wikipedia.org/wiki/Compare-and-swap
https://en.wikipedia.org/wiki/Compare-and-swap
https://en.wikipedia.org/wiki/Click-through_rate

