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Abstract—Non-local low-rank tensor approximation has been developed as a state-of-the-art method for hyperspectral image (HSI)
restoration, which includes the tasks of denoising, compressed HSI reconstruction and inpainting. Unfortunately, while its restoration
performance benefits from more spectral bands, its runtime also substantially increases. In this paper, we claim that the HSI lies in a
global spectral low-rank subspace, and the spectral subspaces of each full band patch group should lie in this global low-rank
subspace. This motivates us to propose a unified paradigm combining the spatial and spectral properties for HSI restoration. The
proposed paradigm enjoys performance superiority from the non-local spatial denoising and light computation complexity from the
low-rank orthogonal basis exploration. An efficient alternating minimization algorithm with rank adaptation is developed. It is done by
first solving a fidelity term-related problem for the update of a latent input image, and then learning a low-dimensional orthogonal basis
and the related reduced image from the latent input image. Subsequently, non-local low-rank denoising is developed to refine the
reduced image and orthogonal basis iteratively. Finally, the experiments on HSI denoising, compressed reconstruction, and inpainting
tasks, with both simulated and real datasets, demonstrate its superiority with respect to state-of-the-art HSI restoration methods.

Index Terms—Hyperspectral image, denoising, image restoration, non-local image modeling, low-rank tensor.
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1 INTRODUCTION

H YPERSPECTRAL imagery (HSI) is a three-dimensional (3D)
cube covering the spectral wavelength region from 0.4 to

2.5 µm at a nominal spectral resolution of less than 10 nm [1].
Thanks to the fast development of HSI techniques [2]–[4], they
have become widely used in applications in remote sensing [5],
medical diagnosis [6], face recognition [7], [8], and quality con-
trol [9]. However, real HSIs often suffer from different kinds of
degradations, i.e., noise [10]–[13], undersampling [14]–[16] or
missing data [17]–[19], because of imaging conditions in practice,
weather conditions, or data transmission procedures. These kinds
of degradation substantially influence the subsequent processing,
and as a result, HSI restoration is a fundamental initial step for
quality improvement and subsequent exploitation [16], [20], [21].

Restoration from a noisy, undersampled, or incomplete HSI is
an ill-posed inverse problem, and the prior, which is also called a
regularizer, is necessary to constrain the solution space [13], [16],
[22]. HSIs have redundant information that can be regularized
as different priors for the solution space in HSI restoration. The
relevant popular priors can be categorized as spatial correla-
tion [10], [23] and spectral correlation [20]. Traditional spatial-
correlation regularized methods, such as total variation [23], can
be regarded as an extension of color image restoration. How-
ever, these methods cannot characterize the main features of
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HSI and fails to achieve state-of-the-art restoration results [21],
[23]. In this paper, we focus on one specific kind of spatial
correlation, named non-local similarity. Methods based on non-
local similarity have achieved state-of-the-art performance in HSI
restoration tasks, such as denoising [10]–[13], [24], compressed
HSI reconstruction [15], [16], [25]–[27], and inpainting [18], [19].
For different restoration tasks, a non-local strategy processes the
HSIs via group matching the full band patches (FBPs, which
are stacked by patches at the same HSI location over all bands)
and a low-rank approximation of each non-local FBP group
(NLFBPG). This kind of non-local processing strategy faces a
crucial problem. For HSIs, a higher number of spectral dimensions
means a higher discriminant ability [28], thus more spectra are
desired for subsequent application. However, as the number of
spectra increases, the size of each NLFBPG also increases, leading
to substantially more computations for the subsequent low-rank
matrix/tensor approximations.

The spectral correlation of HSIs, modeled as a spectral
low-rank approximation, has also been widely utilized for HSI
denoising [20], [29], compressed HSI reconstruction [30]–[32]
and inpainting [17], [18], [33]–[35]. However, because of the
lack of spatial regularization, spectral low-rank regularization
alone cannot restore the HSI efficiently. Therefore, spatial-based
methods are embedded into the spectral low-rank regularization
to simultaneously restore the HSI [36]–[41]. Another promising
improvement is to project the original degraded HSI onto a low-
dimensional spectral subspace and restore the projected HSI via
spatial-based methods [34], [42]. Unfortunately, these two-stage
methods are heavily influenced by the quality of projection and the
efficiency of spatial restoration. All of them fail to capture a clean
projection matrix, which keeps the low quality of the restored HSI.

This paper proposes a unified paradigm to deal with vari-
ous HSI restoration tasks, namely, denoising, compressed HSI
reconstruction, and inpainting. To alleviate the aforementioned
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Fig. 1. Flowchart of the proposed method (Algorithm 1). It includes: A. latent input HSI estimation, B. Spectral orthogonal basis optimization and
C. non-local similarity estimation. C consists of two steps including group matching and non-local low-rank approximation. D. Noise estimation and
rank adaptation.

problems, the proposed paradigm integrates the spatial non-local
similarity with the global spectral low-rank property. We start
from the viewpoint that the HSI should lie in a low-dimensional
spectral subspace [43], [44], which has been widely accepted
for hyperspectral imaging [45], denoising [46], and compressed
sensing [46], [47] tasks. Based on this fact, the all NLFBPGs
should also lie in a common low-dimensional spectral subspace.
Thus, the proposed paradigm first learns a global spectral low-rank
orthogonal basis and subsequently exploits the spatial non-local
similarity of the projected HSI on this basis. In our paradigm,
the computational cost of non-local processing remains almost
the same even with more spectral bands, and the global spectral
low-rank property is also enhanced. The main novelties and
contributions are summarized as follows: 1

• We propose a new unified paradigm for HSI restoration, that
can jointly learn and iteratively update the orthogonal basis
matrix and reduced image (Fig. 1). The proposed paradigm can
guarantee the performance superiority via state-of-the-art non-
local denoising methods, meanwhile get rid of the considerable
computation burden caused by high spectral dimension non-
local processing.

• An efficient alternating minimization algorithm with conver-
gence analysis is developed. To enhance the real applications,
we also design a linear strategy to adaptively predict the
dimension of the orthogonal basis.

• Finally, the proposed restoration method is evaluated on sim-
ulated and real data. It is compared with other state-of-the-
art methods on three important HSI restoration tasks, i.e.,
denoising, compressed HSI reconstruction, and inpainting.
This paper is an extension of a previous conference paper [48].

Compared to [48], we extend the work as follows: (i) We introduce
a new objective (Section 3.1), which extends our model from HSI
denoising to a more general HSI restoration model, that includes
denoising, compressed HSI reconstruction, and inpainting (Sec-
tion 4). (ii) The optimization in our conference paper is specific to
denoising, as iterative regularization is used. Here, we propose an

1. Code is avaliable at: https://github.com/quanmingyao/NGmeet

efficient alternating minimization algorithm with rank adaptation
to solve the objective (Section 3.2). While the proposed algorithm
is still based on alternating minimization, its subproblems are
different, and it depends on a restoration model. (iii) We conduct
additional experiments to evaluate HSI restoration, and our unified
model achieves the best results not only for HSI denoising, but
also for the compressed HSI reconstruction (Section 5.2) and
inpainting (Section 5.3) tasks.

Notations
We follow the tensor notation in [49], the tensor and ma-
trix are represented as Euler script letters, i.e. X and bold-
face capital letter, i.e. A, respectively. For a N -order tensor
X ∈ RI1×I2×···×IN , the mode-n unfolding operator is denoted
as X(n) ∈ RIn×I1···In−1In+1···IN . We have foldn(X(n)) =
X , in which foldn is the inverse operator of unfolding op-
erator. The Frobenius norm of X is defined by ‖X‖F =
(
∑
i1

∑
i2
· · ·
∑
iN
x2
i1i2...iN

)0.5. The mode-n product of a tensor
X ∈ RI1×I2×···×IN and a matrix A ∈ RJn×In is defined as
Y = X ×n A, where Y ∈ RI1×I2×···×Jn and X ×n A =
foldn(AX(n)).

2 RELATED WORK

Because restoration is an ill-posed problem, proper regularization
from HSI prior knowledge is necessary [38]. The mainstream
regularizer for HSI restoration can be grouped into two categories:
non-local similarity regularizers and low-rank regularizers. We
review these methods for HSI restoration in this section.

2.1 Non-local similarity based methods

Non-local similarity regularization has been widely utilized in
HSI denoising [10], compressed HSI reconstruction [50], [51]
and inpainting [19]. Specifically, [12] was the first to introduce
non-local low-rank modeling for HSI denoising. this non-local
denoising architecture has two stage: FBPs grouping and low-
rank tensor approximation. On the basis of this architecture,

https://github.com/quanmingyao/NGmeet


JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XXXX XXXX 3

different kinds of low-rank modeling for NLFBPGs were proposed
to simultaneously exploit the spatial non-local similarity and
spectral low-rank property, including Tucker decomposition [12],
sparsity regularized Tucker decomposition [13], Laplacian scale
mixture low-rank modeling [11], weighted nuclear norm min-
imization [51], dimension-discriminative low-rank tensor recov-
ery [52], weighted low-rank tensor recovery [53], and tensor ring
decomposition [54]. By estimating the latent low quality HSI from
the degraded observations, the compressed HSI reconstruction and
inpainting tasks are converted to the non-local denoising of a latent
low quality HSI, resulting in state-of-the-art reconstruction [15],
[16], [38], [50] and inpainting [19], [25], [55] results. However,
as the number of spectra increases, the computational burden
also increases substantially, impeding the application of non-local
methods to real high-dimensional HSIs.

The above methods adopt low-rank regularization to explore
the prior of local spatial correlation. However, Chang et al. [10]
claimed that the spectral and local low-rank property of NLFBPGs
is weak. Hence, they simply adopt a non-local low-rank prior to
produce state-of-the-art HSI denoising results, while substantially
reduce the computational burden. Thus, previous methods sub-
optimally utilize spectral and local spatial correlation. How to
balance the contributions of spectral correlation and non-local
similarity remains a problem.

2.2 Global low-rank based methods
Global spectral low-rank correlation is another powerful prior for
HSI restoration. As described in [56], the HSI has approximate
spectral low-rank property, and the approximate dimension of the
spectral subspace can be far less than that of the original image.
Thus, by vectorizing each band of the HSI and reshaping the
original 3D HSI into a 2D matrix, various low-rank approxima-
tions such as principal component analysis (PCA) [30], [57], [58],
robust PCA [20], [29], [32], and low-rank matrix factorization [46]
have been directly adopted to the restoration of HSI. However,
the reshaping processing of the spatial dimensions destroys the
spatial correlation. Low-rank tensor approximation is one way
to additionally exploit the spatial low-rank correlation [18], [33],
[59]–[61]. However, as pointed out in the introduction, simple
low-rank regularization for spatial correlation is inappropriate,
resulting in the failure of such methods to achieve the optimal
restoration performance. Typically, there are two strategies to
combine spatial correlation and the spectral low-rank property.
In the first approach, many conventional spatial regularizers such
as total variation [36], [39], [62], [63] are combined with low-rank
matrix/tensor approximation to simultaneously exploit the spatial
and spectral properties. Alternatively, a two-stage method is used
to combine the spatial regularizer and spectral low-rank property
together. This is done by first mapping the original HSI into a
low-dimensional spectral subspace, and then restoring the mapped
image via existing spatial restoration method or HOSVD [64],
[65]. These two-stage methods provide a new insight to restore
the HSI in the transferred spectral space that is very fast. However,
these methods do not refine the subspace and thus fail to combine
the best of both worlds, i.e., non-local similarity and the global
spectral low-rank property. Moreover, the extracted subspace is
still of low quality.

3 PROPOSED NGMEET PARADIGM

In this section, we propose a unified HSI restoration paradigm to
integrate the spatial non-local similarity prior and global spectral

low-rank property prior. We first solve a fidelity term-related
problem to learn the latent input HSI by enhancing the consistency
of the recovered output image with the observed data, and then
learn a low-dimensional orthogonal basis and the related reduced
image from the latent input HSI to explore the global spectral
low-rank prior. Subsequently, the reduced image is updated by the
non-local similarity prior. Finally, the optimization is iterated to
refine the orthogonal basis and the reduced image, alternately. An
overview of the proposed restoration paradigm is shown in Fig. 1.

3.1 Unified restoration paradigm

Summarized from [13], [16], [19], [51], we assume that a clean
HSI X ∈ RM×N×B is corrupted by linear degradation operator
h and additive Gaussian noise N (with zero mean and variance
σ2

0). Then the degraded HSI Y is generated by

Y = h(X ) +N . (1)

By specifying different h, (1) can be adapted for various HSI
restoration tasks. In this study, we choose three classical HSI tasks,
i.e., denoising [13] where h is an identity operator (Section 4.1),
reconstruction [16], [51] where h is a compressed measurement
operator (Section 4.2), and inpainting [17], [19], [35] where h
is a sampling operator (Section 4.3). Image restoration recovers
a desired unknown image from corrupted observations given by
(1). Usually, Y is a sampled vector in the compressed HSI recon-
struction problem and a tensor in HSI denoising and inpainting
problems. Because the corruption process is irreversible, image
restoration is usually an ill-posed problem [13], [66]. Thus, it is
necessary to utilize prior information or a regularizer for image
restoration [13], [16].

In this paper, motivated by the problems with existing works
discussed in Section 2, we propose a unified HSI restoration
paradigm to simultaneously capture the non-local similarity and
global spectral low-rank property priors.

• First, to capture the spectral low-rank property (Section 2.2),
we are motivated to use a low-rank representation on the clean
image, i.e.,

X =M×3 A, (2)

where K � B, A ∈ RB×K is an orthogonal basis matrix
capturing the common subspace of different spectra, andM ∈
RM×N×K is the reduced image.

• Second, we add a spatial regularizer to denoise the reduced im-
ageM. In this paper, we follow the state-of-the-art architecture
as in [10], [51] and adopt a non-local regularizer

‖M‖NL =
∑

j
r([M]Gj ), (3)

where Gj represents the pre-defined non-local group, [M]Gj

extracts corresponding patches indicated by Gj from the image
M to form the j-th exemplar patch group, and r is a regularizer
imposed on all patches groups. Typically, TV [36], wavelets
[42] and CNN [67], [68] can be adopted as the spatial regular-
izer r to reduce the noise ofM.

Putting (2) and (3) into (1), the proposed non-local meets global
(NGmeet) restoration paradigm is represented as

min
A,M

1

2
‖Y−h(M×3A)‖2F +λ ‖M‖NL s.t. A>A = I, (4)
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where λ is the trade-off parameter between the recovered output
image and observed data. In addition, basis matrix A must be
orthogonal.

Remark 3.1. The orthogonal constraint A>A = I is very
important here. First, it encourages the representations held in A
to be more distinct. This helps to keep noise out of A. It preserves
the distribution of noise, which allows us to estimate the remaining
noise levels in the reduced image and employ a state-of-the-art
Gaussian based non-local method for spatial denoising (10).

3.2 Efficient optimization by alternative minimization
The objective (4) needs to handle the orthogonal constraint on A
and complex regularization onM. Inspired by the success of half-
quadratic splitting in image processing [66], [69], we introduce an
auxiliary variable Z and propose to relax (4) as follows:

{A∗,M∗,Z∗} =arg min
A,M,Z

F (A,M,Z) (5)

where F is defined as

F (A,M,Z) =
1

2
‖Y−h(Z)‖2F + λ ‖M‖NL

+
µ

2
‖Z −M×3 A‖2F , s.t. A>A = I,

and the last quadratic term encourages Z to be closed toM×3A,
and µ is a hyper-parameter to be tuned.

Based on the reformulation in (5), we are motivated to use
alternating minimization [69], [70] for optimization (Algorithm 1).
Let Zi and Xi stand for the latent input image and the recovered
output image of the i-th iteration, respectively. The aim of Algo-
rithm 1 is to update the latent input image (step-3) to enhance the
consistency of the recovered output image with respect to observed
data Y . To further improve the quality of latent input imageZi, we
find an optimization for A (step 4) to exploit the spectral low-rank
property, and use a state-of-the-art non-local denoising method to
compute ‖ · ‖NL (step 5).

Algorithm 1 Non-local Meets Global (NGmeet).

Require: Observed image Y , noise variance σ2
0

1: Initializing X0, estimating K using HySime [56];
2: for i = 1, 2, 3, · · · iter do
3: A). Latent input image estimation via (6);

Estimate latent input image Zi;
4: B). Spectral orthogonal optimization optimization via (8):

Estimate orthogonal basis matrix Ai and reduced image
M̄i via SVD on Yi;

5: C). Non-local denoising on M̄i via (10):
-C.I) Obtain the set of non-local groups

{
Gji
}

for M̄i via
k-NN search for each reference patch in (11);
-C.II) Denoise {

[
M̄i

]
Gj
i
} via Low-rank approximation and

obtain {Mj} with σ2
i in (12);

-C.III) Reconstruct the cubes {Mj} to image Mi, and
obtain the denoised HSI Xi =Mi ×3 Ai in (13);

6: -D.I). Noise re-estimation: via (14);
-D.II). Rank adaptation: K = min(K + δ × i, B);

7: end for
8: return Recovered image Xi =Mi×3Ai.

We provide the theoretical convergence analysis for Algo-
rithm 1 in Section 3.3, by fixing the ideal cases of noise variance

σ2
i , dimension K , and non-local groups

{
Gj
}

for each iteration.
However, in the real applications, the estimation of dimension
K and the ideal non-local similar groups are the key prob-
lems. We introduce some empirical enhancement including non-
local similar groups re-matching (Step 5-C.I), noise re-estimation
(Step 6-D.I), and dimension K re-estimation (Step 6-D.II) for
each iteration to make sure that NGmeet is more efficient for the
real HSIs restoration. Next, we present the details to each step in
Algorithm 1.

Step 3: Latent input image estimation

We first fix variablesMi−1 and Ai−1 and update latent variable
Zi. The optimization is formulated as

Zi=arg min
Z

1

2
‖Y−h(Z)‖2F +

µ

2
‖Z −Mi−1×3Ai−1‖2F . (6)

Specifically, the optimization of (6) is related to a quadratic reg-
ularized least-square problem, which has different fast solutions
for different degradation problems. We discuss the solution for
different HSI restoration tasks in Section 4.

Step 4: Spectral orthogonal basis optimization via A

In this stage, we identify the orthogonal basis matrix A with the
givenMi−1 and Zi from (5), which leads to

Ai = arg min
A>A=I

1

2
‖Zi −Mi−1 ×3 A‖2F . (7)

The key challenge to optimizing A is that, as we increase the
dimension K of Ai+1 in the next i+1 iteration, we will lose the
closed-form solution of optimizing A via (7). Thus, we propose
to relax (7) as

{M̄i,Ai} = arg min
M,A>A=I

1

2
‖Zi −M×3 A‖2F . (8)

The closed-form solution to (8) can be obtained by a singular value
decomposition (SVD) on the folding matrix of (Zi)(3), which can
be efficiently computed. The optimization of A via (8) is simply
related to the latent input image Zi and suitable for any K .

Remark 3.2. We also provide a more elegant solution to (7)

Ai = arg min
A>A=I

1

2
‖Zi −Mi−1 ×3 A‖2F

= arg max
A>A=I

〈
A, (Zi)(3)(Mi−1)>(3)

〉
. (9)

According to [13], the optimization of A via (9) has the closed-
form solution of Ai = BC>, where (Zi)(3)(Mi−1)>(3) =

BDC> is the SVD. However, the optimization (9) is only suitable
for the first iteration. In the next iteration, the size of Ai+1

remains the same, as the limitation of the size of Mi. Therein,
an empirically enhancement is introduced to augment the spectral
size of Mi via [Mi,Ni], where Ni ∈ RM×N×δ , and (Ni)(3)

can be achieved by the first δ right singular value vectors of
(Zi+1 − Mi ×3 Ai)(3). The meaning of δ will be introduced
in (15). Furthermore, the optimization of A via (9) and (8)
yields nearly identical HSI restoration results as analyzed in
Section 5.4.1.
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Step 5: Non-local denoising on M̄i

Here, we fix Ai and Zi, and identify the reduced imageM from
(5), which is given by

arg min
M

1

2

∥∥M̄i −M
∥∥2

F
+ λ0 ‖M‖NL . (10)

where M̄i = Zi ×3 A>i is from Lemma 3.1 and step 4, and
λ0 = λ/µ.

Lemma 3.1. arg minM
1
2 ‖Z−M×3 A‖2F + λ

µ ‖M‖NL =

arg minM
1
2

∥∥Z ×3 A
>−M

∥∥2

F
+ λ
µ ‖M‖NL when A>A=I.

With (10), we transfer the high dimensional original HSI
denoising to the low-dimensional reduced image M̄i denoising.
However, since patches are overlapped with each other, there is
no simple closed-form solution for (10). Following other works
on non-local image denoising [19], [34], [70]–[74], we also
approximate the optimal solution of (10) via following three steps

Aji =
[
M̄i

]
Gj
i

for all groups, (11)

Mj = proxλ0r
(Aji ) for all groups, (12)

M∗ = aggrate allMj , (13)

where (11) represents the searching for non-local groups {Gji } as
in step 5-C.I of Algorithm 1. If we fix {Gji } for each iteration, we
have the chance to obtain the theoretical convergence analysis as
in Section 3.3. However, the empirical experience in the previous
works [10], [51] has proved that the re-matching of non-local
similar groups can boost the restoration performance. In this paper,
we also perform such a re-matching step on the reduced image
M̄i. As in step 5-C.I of Algorithm 1, we utilize k-NN [74] for the
j-th exemplar patch on M̄i. The explanation of this empirical
enhancement is that as the iterations, the noise level of M̄i

decreases, and therefore, the accuracy of non-local similar groups
via k-NN also gradually increases.

In (12), proxλ0r
(A) = arg minA

1
2‖A

j
i − A‖2F + λ0r(A)

is known as the proximal operation in the optimization literature
[75]. Instead, simple-closed form exists for (12). We reshape Aji
to the matrix along non-local dimension, and adopt a low-rank
regularizer, i.e., WNNM [74], here in this paper. (12) can be
computed by a singular value decomposition (SVD) on the matrix
version of patch group Aji . In (13), the denoised group tensors
are denoted as Mj , and they can be directly used to reconstruct
reduced image Mi. The output of the recovered HSI of i-th
iteration is Xi =Mi ×3 Ai.

The performance superiority of our paradigm is guaranteed by
state-of-the-art non-local spatial denoising (12), meanwhile, the
computation complexity is controlled by the low-rank orthogonal
basis exploration (7). In this paper, we focus on the design of
the proposed paradigm, since the spectral low-rank property has
been explored by (7), we simply use matrix based WNNM [74] to
denoise each non-local patch group

[
M̄i

]
Gj
i
. The better choice of

the reduced image denoiser is explored in Tab. 10.

Step 6-D.I: Noise re-estimation
When we adopt WNNM [74] to solve the subproblem of (12), we
need to estimate the parameter λ0 =

σ2
i

2 with σ2
i standing for

the noise level of M̄i, which changes during the iterations. Please
note that many non-local denoising methods assume the noise in
M̄i follows a univariate Gaussian distribution [70]–[74]. If such

assumption fails, the resulting performance can deteriorate sub-
stantially. Here, we have the following Proposition 3.2. Therefore,
the noise distribution is preserved from Y to M̄i, which enables
us to use the existing spatial denoising methods.

Proposition 3.2. Assume the noisy HSI Z is from (5), then the
noise on the reduced image Z ×3 P>, where P>P = I, still
follows Gaussian distribution with zero mean and variance σ2

0 .

From Proposition 3.2, we know the noise level of M̄i is the
same as that of Xi; thus, we propose to estimate it via

σi = γ ×
√
|σ2

0 − ‖Xi −X0‖2F /(MNB), (14)

where γ is the scaling factor controlling the re-estimation of noise
variance.

Step 6-D.II: Rank adaptation
The rank of subspace A leads to a trade-off between noise removal
ability (lower ranks) and image preservation ability (higher ranks).
In Algorithm 1, A is refined during the iteration, to adaptively
adjust the estimated rank to boost the restoration performance.
At the beginning of Algorithm 1, because the recovered image
Xi−1 =Mi−1 ×3 Ai−1 is of low quality, the latent input image
Zi obtained by (6) is also of low quality. As shown in (8), the
orthogonal basis is substantially influenced by the low quality of
latent input image Zi. Fortunately, after the spectral denoising
(8) and spatial denoising (10), the quality of Xi = Mi ×3 Ai

is substantially improved. As a result, in the next stage, the
quality of Zi+1 is improved, resulting in a better estimation of
the orthogonal basis via (8) and the reduced image via (10).

We initialize K as a small value by HySime [56] (in step 1).
When the latent input image X is of low quality, the estimated
K can be small to get rid of the noise and achieve the satisfied
restored results. From another perspective, real HSIs have approx-
imate spectral low-rank property and the noisy-free HSIs are of
full-rank. It can be concluded that a smaller value K results in the
details missing in the HSI restoration. From the above discussion,
as the iteration, we are motivated to increase K by

K = min(K + δ × i, B), (15)

where stepsize δ and B are constant values. δ is the spectral rank
estimation gap between the input Zi of nearby iterations, and
B is the spectral size of image X . As the iterations, the noise
variance decreases, and we need a larger value K to capture more
details of the image. Therefore, Ai+1 has the ability to capture
more useful information with the number of iterations. As we
increase the dimension K of Ai+1 in the next iteration, we will
meet the challenge to optimize (7). We introduce two empirical
methods to optimize (7) via (8) and (9), respectively. Furthermore,
the optimization of A via the above two empirical methods will
produce almost the same HSI restoration results as analyzed in
Section 5.4.1.

3.3 Convergence Analysis

In this subsection, we fix the ideal cases of noise variance σ2
i ,

dimension K , and non-local groups
{
Gj
}

for each iteration.
To analyze the convergence behavior of Algorithm 1, the main
problem here is that we have many overlapped regularizers in (5),
which are approximated by (11)-(13). To address this issue, we
will make use of the proximal average theory [35], [76], [77] as
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mathematics tools. Note that the tool is also new to the hyper-
spectral image literature, as previous analysis is mostly based
on ADMM [51]. Thus, they ignore the approximation problem
on non-local patch groups. First, we make Assumption 1 on the
regularizer r. Assumption 1 is very general, which covers the TV
[36] and weighted nuclear norm [74] regularization.

Assumption 1 ( [78]). The regularizer r can be decomposed as
r = r1 − r2 where r1 and r2 are convex functions.

Proposition 3.3. There exists a function r̄ such that M∗ =
proxr̄

(
M̄i

)
whereM∗ is in (13) and M̄i is in (10).

From Proposition 3.3, we can see Algorithm 1 is optimizing
another objective F̄ , which is defined as

F̄ (A,M,Z) =
1

2
‖Y−h(Z)‖2F + λr̄(M)

+
µ

2
‖Z −M×3 A‖2F , s.t. A>A = I.

The approximation is guaranteed in Proposition 3.4, where the
constant error is caused by using (11)-(13) to generate (10).

Proposition 3.4. 0 ≤ minF − min F̄ ≤ λ0c where c is a
constant.

Subsequently, the convergence of Algorithm 1 is justified in
below Remark 3.3.

Remark 3.3. Assume F̄ is coercive, step C.I (re-matching) and
D.I-II (adaptation) are not performed, then each sequence {Ai},
{Mi}, {Zi} generated from Algorithm 1 has at least one limit
points, and all limit points are also critical points of F̄ .

3.4 The Importance of Iterative Refinement
Because denoising, compressed HSI reconstruction and inpainting
can be formulated as the same optimization model (5) with
different degradation operators h, we take HSI denoising as
an representative example to look into (5), and determine why
NGmeet should perform better than all previous spectral low-
rank methods [34]. First, we initialize Z1 = Y . Recall that
in (5), our model tries to exploit the spectral low-rank property
and decompose the noisy latent input Z1 into a coarse spectral
low-rank orthogonal basis A and reduced imageM. Specifically,
the i-th column of A, denoted as A(:, i), is regarded as the
i-th signature of HSI, and the corresponding coefficient image
M(:, :, i) is regarded as the abundance map. However, we model
the spatial and spectral low-rank properties simultaneously, which
enables an iterative refinement of the orthogonal basis matrix A.
To demonstrate the advantage of our model, we calculated the
orthogonal basis A1 and reduced image M̄ from noisy WDC
with noise variance 50. The reference A and M are from the
original clean WDC.

We firstly illustrate the advantage of our iterative paradigm
model for orthogonal basis matrix and reduced image rectification.
Fig. 2(a) presents the coefficient (or reduced) image before and
after spatial denoising (10). These results can also be obtained by
a previous method [34]. Fig. 2(b) presents the absolute difference
signature between the reference A and A1 (A2) obtained by
our paradigm. Typically, the smaller absolute difference signature
means a clearer orthogonal basis. Fig. 2(b) shows that the orthog-
onal basis A is refined by our proposed model iteratively, however
ignored in [34]. Subsequently, we illustrate the advantage of our
rank adaptation strategy (15). δ = 0 in (15) means the fixed rank in

Fig. 2. (a) displays the coefficient images M̄(:, :, 4) before and after
spatial denoising (10). (b) displays the absolute difference signature
between A(:, 4) and the reference before and after iteration. (c) displays
the PSNR values ofXiter with δ equal to 0 and 2 in (15). The test dataset
is WDC with noise variance 50.

the paradigm iterations. The rank adaptation with δ > 0 helps the
model to more precisely capture the detailed image information,
as displayed in Fig. 2(c).

4 APPLICATION EXAMPLES

In this section, we implement the details of proposed NGmeet
for three HSI restoration problems: denoising, compressed HSI
reconstruction, and inpainting.

4.1 HSI denoising

HSIs have been proved useful in different applications such as
remote sensing [5], medical diagnosis [6], and face recognition [7],
[8]. However, during the imaging process, the HSIs are often
corrupted by instrumental noise. Therefore, HSI denoising is nec-
essary for subsequent applications. The purpose of HSI denoising
is to obtain a clean image from the noisy image. For the denoising
task using the proposed NGmeet, the degradation operator h is
the identity operator, andN stands for Gaussian distributed noise.
The objective function now becomes

{A∗,M∗,Z∗} =arg min
A,M,Z

1

2
‖Y−Z‖2F + λ ‖M‖NL (16)

+
µ

2
‖Z −M×3 A‖2F , s.t. A>A = I,

Specifically, the noise variance is known in advance. We adopt
a multiple regression theory-based approach [56] to estimate the
noise variance for the real HSI dataset. The update of the latent
input image Z is

Zi =
1

1 + µ
(Y + µMi−1×3Ai−1) , (17)

By carefully choosing parameter µ and initializing X0 = 0,Z1 =
Y , the optimization of (17) becomes a special case of iteration
strategy proposed in our previous paper [48].
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4.2 Compressed HSI reconstruction

High spectral resolution is beneficial for the applications of HSI
but heavily increases the burden of data storage and transmis-
sion [15], [16], [28]. The aim of compressed HSI reconstruction is
to compress the HSI via a small number of measurements in the
encoder stage, so that the compressed data can be reconstructed
in the decoder stage [16]. In this paper, we focus on the decoder
stage, which recovers the HSI from the compressed data. We per-
form two kinds of compressed measurements in the encoder stage
to evaluate the efficiency of the proposed NGmeet reconstruction
method. First, the same as in [16], [40], we assume that the original
HSI is available, and the random permuted Hadamard transform
operator is adopted to compress (decoder) the image. Second, as
introduced in [51], [57], a compressive sensor is used to obtain
a coded compressed image with a prior designed measurement
operator, which is called compressive HSI imaging. In both cases,
we can assume that the sampling measurement operator h is
known in advance, and our proposed NGmeet method can be
successfully used to reconstruct the HSI, which is formulated as:

{A∗,M∗,Z∗} =arg min
A,M,Z

1

2
‖Y− h(Z)‖2F + λ ‖M‖NL (18)

+
µ

2
‖Z −M×3 A‖2F , s.t. A>A = I.

To enhance consistency of the reconstructed image X with
measured data Y , we need to optimize (6), which is equivalent to
the following problem:

h?h(Zi) + µZi = h?Y + µMi−1×3Ai−1, (19)

where h? is the adjoint of h [40], [51]. The optimization of (19)
can be efficiently solved by the preconditioned conjugate gradient
method [40], [51].

In compressed HSI reconstruction, the HSI is free from
Gaussian noise, but suffers from other kinds of degradations. We
initialize the variance of the Gaussian noise to a small value to
ensure the success of NGmeet. Other parameters, such as λ, µ,
and γ are set the same values used in the HSI denoising task.
Typically, the measurement operator h is poorly conditioned, and
a good initialization of X0 = M0 ×3 A0 is necessary to predict
a satisfactory latent input image Z via (6). We adopted the initial-
ization method as introduced in [50] for the random measurement
compressed case and the initialization method introduced in [51]
for the compressive HSI imaging case.

4.3 HSI inpainting

Because of sensor failure and poor weather conditions, remote
sensing images often suffer from missing information, such as
stripes and clouds [17], [64], that substantially influence the
subsequent applications. The aim of HSI inpainting is to predict a
clean image from the observed HSI with missing information [19],
[35]. In the inpainting case, h is the sampling operator and we
adopt Ω to represent the locations of the sampling pixels. The
objective function is

{A∗,M∗,Z∗}=arg min
A,M,Z

1

2
‖Y− PΩ(Z)‖2F +λ ‖M‖NL , (20)

+
µ

2
‖Z −M×3 A‖2F , s.t. A>A = I,

where PΩ is the projection to the observed Ω. Then, the optimiza-
tion of the latent input image Z via (6) becomes

(Zi)(i,j,k) =

{
Y(i,j,k) (i, j, k) ∈ Ω

(Mi−1×3Ai−1)(i,j,k) (i, j, k) /∈ Ω
.

Finally, we initialize parameters λ, µ, and γ have the same values
as those in the HSI denoising task; and warm start X0 =M0×3

A0 as [19].

4.4 Time complexity analysis

We compare the time complexity of NGmeet with other state-
of-the-art non-local methods [10], [13]. Taking the application in
Section 4.1 as an example, the main time complexity of each iter-
ation in Algorithm 1 includes stage A—SVD (O(MNB2)), and
stage B—non-local low-rank denoising of each Gj O(Tn2Kp2).
For different application tasks, the optimization of (6) is differ-
ent but cheap to compute, and therefore, is omitted from the
time complexity analysis. Tab. 1 presents the time complexity
comparison between NGmeet with those of other non-local HSI
denoising method. Here, LLRT and KBR only need stage B
to perform denoising. As the results show, NGmeet costs an
additional O(MNB2) complexity in stage A, however, it will
be at least B/K times faster in stage B.

TABLE 1
Complexity comparison of each iteration between proposed NGmeet

and state-of-the-art non-local based methods. Gj ∈ Rn×n×K×p,
where n is the size of each patch and p is the number of similar

patches. T is the number of {Gj} and To is the inner iteration of KBR.

stage A stage B
NGmeet O(MNB2) O(Tn2Kp2)

LLRT [10] — O(Tn2Bp2)

KBR [13] — O(TT0(n2Bp(n2 +B + p) +
n6 +B3 + p3))

5 EXPERIMENTS

In this section, we present experimental results for the three
HSI restoration tasks, denoising (Section 5.1), compressed HSI
reconstruction (Section 5.2) and inpainting (Section 5.3). The
experiments were programmed in Matlab on a computer equipped
with a CPU Core i7-7820HK and 64G memory.

5.1 HSI denoising experiments

5.1.1 Simulated-data experiments

Setup. One multi-spectral image (MSI) from the CAVE dataset
2, and two HSI images, i.e. on each from the PaC 3 and WDC 4

datasets were used (Tab. 3). These images have been widely used
in simulated-data studies [10], [12], [13], [34], [79]. Following
the settings in [10], [12], additive Gaussian noise with noise
variance σ2

0 was added to the MSI/HSIs with various values of
σ2

0 of 10, 30, 50 and 100. Before denoising, the whole HSIs were
normalized to [0, 255].

2. http://www1.cs.columbia.edu/CAVE/databases/
3. http://www.ehu.eus/ccwintco/index.php/
4. https://engineering.purdue.edu/∼biehl/MultiSpec/hyperspectral

http://www1.cs.columbia.edu/CAVE/databases/
http://www.ehu.eus/ccwintco/index.php/
https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral
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TABLE 2
Quantitative comparison of different algorithms in the simulated HSI denoising experiments. The PSNR is in dB, and best results are in bold.

spectral low-rank spatial non-local similarity

Image σ Index LRTA LRTV MTS-
NMF

NAIL-
RMA

PARA-
FAC

Fast-
HyDe TDL KBR LLRT NG-

meet
PSNR 44.12 41.47 44.27 28.51 38.01 46.72 45.58 46.20 47.14 47.89

CAVE 10 SSIM 0.969 0.949 0.972 0.941 0.921 0.985 0.983 0.980 0.989 0.990
SAM 7.90 16.54 8.49 14.52 13.86 6.62 6.07 8.94 4.65 4.71
PSNR 38.68 35.32 37.18 35.11 37.58 41.21 39.67 41.52 42.53 43.15

30 SSIM 0.913 0.818 0.855 0.775 0.888 0.945 0.942 0.942 0.974 0.972
SAM 12.86 33.32 14.97 32.43 17.37 14.06 12.54 19.43 8.23 7.43
PSNR 35.49 32.27 33.40 32.11 30.06 38.05 36.51 39.41 40.09 40.43

50 SSIM 0.858 0.719 0.730 0.638 0.571 0.889 0.888 0.922 0.950 0.950
SAM 16.53 43.65 19.06 22.85 38.35 20.08 18.23 21.31 11.48 9.77
PSNR 31.21 27.97 27.96 27.90 24.29 33.41 31.90 33.78 36.25 37.19

100 SSIM 0.735 0.529 0.493 0.453 0.256 0.746 0.734 0.851 0.910 0.926
SAM 22.67 54.85 26.33 55.66 51.83 30.72 28.51 26.41 18.17 16.22
PSNR 38.49 38.71 40.64 41.46 33.39 42.22 41.46 40.09 41.95 43.18

PaC 10 SSIM 0.975 0.979 0.988 0.987 0.866 0.990 0.988 0.984 0.989 0.992
SAM 4.90 3.29 2.76 3.46 9.05 2.99 3.06 2.86 2.75 2.60
PSNR 32.07 32.76 35.45 34.17 30.92 35.98 34.43 34.39 35.04 36.99

30 SSIM 0.908 0.920 0.958 0.941 0.845 0.962 0.949 0.947 0.957 0.972
SAM 7.88 5.76 4.17 6.54 9.28 5.09 5.11 4.28 4.86 4.26
PSNR 29.11 29.45 32.51 30.71 29.24 33.32 31.31 31.05 32.00 34.42

50 SSIM 0.836 0.850 0.921 0.886 0.846 0.936 0.904 0.892 0.918 0.949
SAM 9.20 8.60 5.50 8.83 11.40 6.55 6.14 5.40 6.55 5.09
PSNR 25.13 26.22 28.17 25.76 23.68 29.90 27.49 27.80 28.63 30.71

100 SSIM 0.655 0.729 0.808 0.728 0.598 0.873 0.789 0.793 0.833 0.892
SAM 10.17 12.76 8.40 12.93 20.22 8.68 7.67 6.95 7.68 6.80
PSNR 38.94 36.64 37.26 42.57 32.38 43.06 41.83 40.58 41.89 43.71

WDC 10 SSIM 0.974 0.968 0.975 0.989 0.914 0.991 0.989 0.986 0.990 0.993
SAM 5.602 4.653 4.429 3.637 8.087 3.070 3.680 3.090 3.700 2.830
PSNR 32.91 32.42 34.65 35.87 31.56 37.39 34.84 34.75 36.30 37.92

30 SSIM 0.917 0.909 0.953 0.958 0.898 0.971 0.953 0.951 0.967 0.975
SAM 8.331 5.991 5.557 7.011 9.009 5.140 6.400 5.240 5.460 4.641
PSNR 30.35 30.12 32.49 32.56 29.49 34.61 31.89 31.61 33.48 35.14

50 SSIM 0.864 0.849 0.922 0.919 0.837 0.948 0.910 0.900 0.938 0.956
SAM 9.43 7.09 6.71 9.22 13.64 6.57 7.94 6.63 6.43 5.81
PSNR 26.84 27.23 28.94 27.85 23.01 31.05 27.66 28.23 29.88 31.48

100 SSIM 0.734 0.740 0.830 0.805 0.550 0.894 0.781 0.789 0.861 0.908
SAM 11.33 9.47 9.44 13.27 25.46 8.91 10.15 9.12 7.99 7.86

TABLE 3
Hyper-spectral images used for simulated experiments.

CAVE PaC WDC
image size 512×512 256×256 256×256

number of bands 31 80 191

The following methods were compared: spectral low-rank
methods, i.e. LRTA [59] 5, LRTV [36] 6, MTSNMF [80] 7, NAIL-
RMA [79] PARAFAC [81] and FastHyDe [34] 8; spatial non-local
similarity methods, i.e. TDL [12] KBR [13] 9, LLRT [10] 10; and
the proposed NGmeet11 (Algorithm 1), which combines the best of
the above two fields. The hyper-parameters of all the comparison
methods were set based on the authors’ code or suggestions in
the relevant papers. The value of spectral dimension K is the
most important parameter. It was initialized by HySime [56] and
updated via (15). Parameter µ is used to control the contribution
of non-local regularization, and γ is a scaling factor controlling

5. https://www.sandia.gov/tgkolda/TensorToolbox/
6. https://sites.google.com/site/rshewei/home
7. http://www.cs.zju.edu.cn/people/qianyt/
8. http://www.lx.it.pt/∼bioucas/
9. http://gr.xjtu.edu.cn/web/dymeng/
10. http://www.escience.cn/people/changyi/
11. https://github.com/quanmingyao/NGmeet

the re-estimation of noise variance [73]. We empirically set
µ = 2, λ = 9 and γ = 0.5 as recommended in [10]. Moreover,
δ = 2 in the whole experiments.

To thoroughly quantitatively evaluate the performance of the
different methods, the peak signal-to-noise ratio (PSNR), the
structural similarity (SSIM) [82] and the spectral angle mean
(SAM) [10], [36] indices were adopted. The SAM index is used to
measure the mean difference in spectral angle between the original
HSI and the restored HSI. A lower value of SAM indicates a
higher similarity between the original and denoised images.

Quantitative comparison. For each noise level setting, we cal-
culated the evaluation values of all the images from each dataset,
as presented in Tab. 2. For each image from CAVE dataset, we
selected a subset of size 300 × 300 × 31 for the experiments.
It can be easily observed that NGmeet achieves the best results
in almost all cases. Another interesting observation is that in the
MSI case, the non-local based method LLRT can achieve better
results than FastHyDe, which has the best result of the spectral
low-rank methods, but it does the opposite in the HSI cases. This
phenomenon confirms the advantage of the NL low-rank property
in the MSI processing and the spectral low-rank property in the
HSI processing.

Visual comparison. To further demonstrate the efficiency of
NGmeet, Fig. 3 shows the color images of the CAVE toy
MSI(composed of bands 31, 11 and 6 [79]) before and after

https://www.sandia.gov/tgkolda/TensorToolbox/
https://sites.google.com/site/rshewei/home
http://www.cs.zju.edu.cn/people/qianyt/
http://www.lx.it.pt/~bioucas/
http://gr.xjtu.edu.cn/web/dymeng/
http://www.escience.cn/people/changyi/
https://github.com/quanmingyao/NGmeet
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Fig. 3. Denoising results on the CAVE-toy image with the noise variance 100. The color image is composed of bands 31, 11, and 6 for the red,
green, and blue channels, respectively.

Fig. 4. Real data experimental results on the Indian Pines dataset. The color image is composed of noisy bands 219, 109 and 1.

denoising. The PSNR value and the computational time of each
method are given under the denoised images. It can be observed
that FastHyDe, LLRT, and NGmeet have huge advantage over the
rest of the comparison methods. The enlarged area shows that
the results of FastHyDe and LLRT contain some artifacts. Our
NGmeet method produces the best visual quality.

TABLE 4
Hyperspectral images used for real data experiments.

Urban Indian Pines
image size 200×200 145×145

number of bands 210 220

5.1.2 Real-data experiments

Setup. Here, AVIRIS Indian Pines HSI 12 and HYDICE Urban
image 13 were adopted for the real-data experiments (Tab. 4). As
in [20], 20 water absorption bands (104-108, 150-163, 220 bands)
of the Indian Pines HSI were excluded for illustration, because
they do not contain useful information. The noisy HSIs were also

12. https://engineering.purdue.edu/∼biehl/MultiSpec/
13. http://www.tec.army.mil/hypercube

scaled to the range [0 255], and the parameters of NGmeet was
set as the same value as those in the simulated-data experiments.
In addition, multiple regression theory-based approach [56] was
adopted to estimate the initial noise variance of each HSI bands.
Visual comparison. Because clean reference images are not avail-
able for these data, we just present the real Indian Pines and Urban
images before and after denoising in Figs. 4 and 5, respectively.
It is clear that NGmeet can simultaneously remove the noise and
keep the spectral details. LRTV produces the smoothest results.
However, the color of the denoised result has large changes,
indicating the loss of spectral information. The denoised results
of FastHyDe and LLRT still contain stripes as shown in Fig. 4.
Hence, although NGmeet is designed under the assumption of
Gaussian noise, it can also achieve the best results for real datasets.

5.2 Compressed HSI reconstruction experiments

5.2.1 Compressed HSI reconstruction

Setup. The MSI CAVE Toy, and two HSI images from PaC and
WDC datasets were used. These datasets have also been widely
used in compressed HSI reconstruction [16], [41], [50]. Following
the settings in [50], we selected a subset from the Toy image, of
size 300× 300× 31 for the experiments. The sampling ratio (SR)

https://engineering.purdue.edu/~biehl/MultiSpec/
http://www.tec.army.mil/hypercube
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Fig. 5. Real data experimental results on the Urban dataset of band 207.

TABLE 5
Quantitative comparison of different algorithms in the simulated HSI compressed reconstruction experiments. The best results are in bold.

Image SR Index IT CPPCA SpeCA SSHBCS CSF JTenRe3DTV NTSRLR NGmeet
PSNR(dB) 25.79 7.20 23.65 20.40 23.54 29.46 28.24 32.20

Toy 2% SSIM 0.713 0.056 0.774 0.695 0.760 0.816 0.765 0.900
SAM 21.837 88.406 24.601 24.816 26.058 18.829 20.339 10.169

PSNR(dB) 29.03 10.83 27.20 23.44 27.97 36.00 34.21 40.72
5% SSIM 0.826 0.187 0.825 0.768 0.849 0.941 0.904 0.975

SAM 18.948 61.142 20.786 25.186 19.373 9.364 12.679 4.829
PSNR(dB) 32.62 21.37 29.68 24.24 32.43 41.69 40.52 47.69

10% SSIM 0.888 0.552 0.880 0.773 0.926 0.979 0.971 0.993
SAM 15.642 32.053 16.802 24.083 14.333 5.467 6.932 2.894

PSNR(dB) 35.50 25.32 36.76 27.16 34.00 44.85 45.56 50.90
15% SSIM 0.925 0.649 0.944 0.857 0.945 0.988 0.989 0.996

SAM 12.775 22.513 9.992 16.188 13.965 3.930 4.217 2.273
PSNR(dB) 38.37 30.61 37.96 29.05 35.08 47.76 48.25 53.82

20% SSIM 0.954 0.837 0.966 0.847 0.950 0.993 0.994 0.998
SAM 9.875 13.961 7.203 22.588 12.774 2.917 3.217 1.630

PSNR(dB) 23.69 13.85 27.65 13.86 26.76 28.60 28.51 29.02
PaC 2% SSIM 0.527 0.288 0.883 0.061 0.881 0.812 0.810 0.834

SAM 9.590 38.986 11.822 50.352 13.033 9.873 7.011 7.451
PSNR(dB) 26.67 23.43 32.47 26.71 31.92 34.32 32.42 35.00

5% SSIM 0.728 0.740 0.942 0.886 0.951 0.942 0.915 0.953
SAM 8.636 18.614 4.663 13.815 6.793 6.941 5.411 5.065

PSNR(dB) 30.01 32.35 41.66 28.71 38.43 41.39 37.21 42.96
10% SSIM 0.862 0.926 0.987 0.901 0.972 0.987 0.970 0.991

SAM 7.867 7.787 3.478 13.199 2.769 3.464 3.912 2.917
PSNR(dB) 32.47 41.98 47.54 36.83 44.16 42.65 41.31 49.45

15% SSIM 0.919 0.991 0.997 0.986 0.995 0.990 0.988 0.998
SAM 7.070 2.927 1.699 3.915 2.152 3.220 2.863 1.596

PSNR(dB) 34.68 42.93 50.55 41.30 46.91 45.06 45.56 52.27
20% SSIM 0.949 0.992 0.998 0.991 0.997 0.994 0.995 0.999

SAM 6.218 2.630 1.369 2.893 1.867 2.563 2.007 1.189
PSNR(dB) 31.38 21.63 34.90 23.91 32.15 30.11 31.73 35.52

WDC 2% SSIM 0.707 0.626 0.903 0.731 0.781 0.873 0.720 0.875
SAM 11.728 26.307 6.168 19.145 13.128 10.905 7.856 6.141

PSNR(dB) 33.61 32.94 42.96 24.36 34.10 38.58 37.77 44.34
5% SSIM 0.799 0.739 0.997 0.828 0.823 0.979 0.907 0.981

SAM 9.095 8.338 2.130 13.389 10.231 4.353 3.925 2.364
PSNR(dB) 36.18 35.93 54.30 27.22 33.38 40.81 42.78 57.33

10% SSIM 0.880 0.775 0.998 0.892 0.793 0.987 0.970 0.999
SAM 6.691 7.251 0.697 10.939 11.197 3.588 2.248 0.646

PSNR(dB) 38.50 47.49 55.89 27.76 38.17 43.46 46.26 58.83
15% SSIM 0.927 0.980 0.999 0.910 0.887 0.992 0.987 0.999

SAM 5.089 1.648 0.584 11.094 6.676 2.829 1.517 0.512
PSNR(dB) 40.83 49.30 57.00 29.14 39.46 44.24 50.40 59.37

20% SSIM 0.956 0.988 0.999 0.934 0.900 0.994 0.995 0.999
SAM 3.878 1.341 0.460 10.857 5.897 2.526 0.961 0.459

varied as 2%, 5%, 10%, 15% and 20%. Before reconstruction, the
MSI/HSIs were normalized to [0, 255].

The following methods were used for the comparison: IT [83],

CPPCA [58]14, SpeCA [84]15, SSHBCS [85], CSF [16]16,

14. http://my.ece.msstate.edu/faculty/fowler/software.html
15. http://www.lx.it.pt/∼bioucas/publications.html

http://my.ece.msstate.edu/faculty/fowler/software.html
http://www.lx.it.pt/~bioucas/publications.html
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Fig. 6. Compressed reconstruction results on the CAVE-Toy image with SR as 0.02.

Fig. 7. Spectral signature curves of pixel (150,150) reconstructed by different methods on CAVE-Toy with SR as 0.02.

JTenRe3DTV [41]17, NTSRLR [50]18, and the proposed NGmeet.
The hyper-parameters of all comparison methods were set based
on authors’ codes or suggestions in their papers. Similar to [50],
NGmeet also adopted the IT method as the initialization. The
values of other parameters in NGmeet were the same as those
in the denoising case. We implemented NTSRLR on a super-
computer with 256G memory. On the WDC dataset, the super-
computer was out of memory when running NTSRLR. Hence we
report the results on a subimage of size 100× 100× 191.
Quantitative comparison. We calculated evaluation values of
all the images from each dataset for each SR, and present the
results in Tab. 5. We can see that NGmeet always achieves better
evaluation results than the non-local similarity method NTSRLR
and global-based method JTenRe3DTV. SpeCA yields evaluation
values similar to those of NGmeet for the PaU and WDC datasets.
However, it performs worse on the CAVE Toy image. CPPCA fails
to reconstruct the image when the SR is low.
Visual comparison. Fig. 6 shows the color images of CAVE Toy
(composed of bands 31, 11 and 6) before and after compressed
reconstruction via different methods. Fig. 7 illustrates the spectral
signature curves of pixel (150,150) reconstructed by different
methods on CAVE Toy with SR of 0.02. SSHBCS fails to

16. https://sites.google.com/site/leizhanghyperspectral/publications
17. The code was provided by Dr. Yao Wang.
18. The code was provided by Dr. Jize Xue.

reconstruct the information of some bands, resulting in the loss of
spectral information. JTenRe3DTV and NTSRLR produce some
blurred details. Overall, NGmeet achieves the best visual results.

TABLE 6
Quantitative comparison of different algorithms in the HSI compressive

imaging reconstruction experiments. The PSNR is in dB. The best
results are in bold.

Method GAP-TV DeSCI NGmeet
Index PSNR SSIM PSNR SSIM PSNR SSIM
value 24.66 0.8608 25.91 0.9094 27.13 0.9130

5.2.2 Compressive HSI imaging

By utilizing the principles of compressed sensing, coded aperture
snapshot spectral imagers (CASSI) have been employed for com-
pressive HSI imaging [57]. Specifically, wavelength dependent
coding is implemented by a coded aperture (physical mask) and
a disperser, and the hardware compressed operator is known in
advance. So far, GAP-TV [23] and DeSCI [51] methods have
achieved satisfactory reconstruction results from images coded via
CASSI. In this section, we also apply NGmeet to compressive
HSI imaging reconstruction from the coded image, with the
compressed operator provided by [51]. The evaluation data is the
CAVE Toy image, which has also been utilized in [51].

https://sites.google.com/site/leizhanghyperspectral/publications
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Fig. 8. Reconstructed images of different methods from coded Toy dataset.

(a) PSNR v.s. band (b) SSIM v.s. band

Fig. 9. PSNR and SSIM values of each band for different inpainting
results on Pavia dataset with SR as 0.05.

The reconstruction results of GAP-TV and DeSCI were pro-
vided by [51]19. Tab. 6 presents the evaluation values of NGmeet
with those of GAP-TV and DeSCI. Fig. 8 illustrates different
images reconstructed via different methods. It can be concluded
that our method NGmeet achieves the best quantitative evaluation
results, as well as the best visual results.

5.3 HSI inpainting experiments
5.3.1 Simulated experiments
Setup. The MSI CAVE, and HSI PaC images were used [19].
Following the settings in [19], we selected a subset from CAVE
dataset of size 300×300×31 for the experiments. The PaC image
dataset is of size 200× 200× 80. The observation ratio of pixels
are of 5%, 10%, and 20%. Before inpainting, the MSI/HSIs were
normalized to [0, 255].

The following methods were compared: AWTC [18]20,
Tmac [33]21, HaLRTC [86]22, T-SVD [87]23, TVTR [17]24, LL-
RTC [19], NLLRTC [19]25, and NGmeet. Following [19], the
proposed NGmeet was initialized as LLRTC.
Quantitative comparison. As presented in Tab. 7, again, NGmeet
achieves the best results in almost all cases. Fig. 9 illustrates
the PSNR and SSIM values of each band for different inpainting
results on the Pavia dataset with an SR of 5%. NGmeet achieves
the highest PSNR and SSIM values almost in all bands, further
demonstrating the advantage of the proposed method.
Visual comparison. Fig. 10 illustrates the recovered images of
different methods from PaU dataset with an SR of 5%. The color
image is composed of bands 80, 34, and 9 for the red, green, and

19. https://github.com/liuyang12/DeSCI
20. The code was provided by Prof. Qiangqiang Yuan.
21. https://xu-yangyang.github.io/software.html
22. http://www.cs.rochester.edu/u/jliu/
23. https://sites.google.com/site/jamiezeminzhang/publications
24. https://sites.google.com/site/rshewei/home
25. The code was provided by Dr. Ting Xie.

blue channels, respectively. Fig. 11 reports the spectral signature
curves of pixel (50,50) reconstructed by all the comparison meth-
ods on the PaU dataset. It can be observed that NGmeet always
achieves the best visual results.

5.3.2 Remote sensing stripes inpainting
Experiments on the real-data stripes inpainting are performed here.
The test data is consist of a time-series Landsat 7 ETM+ image
of the Dubai area. The image size is 300 × 300 × 6 × 8, which
is a spatial size of 300 × 300, 6 spectra, and 8 time nodes. We
merged the spectral and time dimension and reshaped the image
into size 300 × 300 × 48 for the subsequent stripes inpainting.
Fig. 12 displays one time node of a remote sensing image before
and after inpainting via different methods. The color image is
composed of bands 6, 5, and 4. Fig. 12(a-b) show the original
missing image and the related masks, respectively. The visual
results NGmeet achieves the best performance. LRRTC, which is
the initialization of NLLRTC and NGmeet, fails to reconstruct
the missing image. However, both NLLRTC and NGmeet can
rectify the missing information in LRRTC and achieve the best
and second-best inpainting results.

5.4 Ablation study
In this section, we report the results of an ablation study of our
NGmeet model. We adopt the denoising task as the example
because HSI restoration shares the same objective model (5) and
denoising is the most fundamental task.

5.4.1 Empirical enhancement analysis
We firstly analysis NGmeet (Algorithm 1) with various empirical
enhancement, including empirical solution (8) and (9) for step 5,
re-matching of non-local similar groups and rank adaptation in
each iteration. NGmeet(δ = 2) means δ = 2 in Algorithm 1,
NGmeet(δ = 0) means δ = 0, NGmeet(9) means adopting
(9) to solve (7), NGmeet(δ = 0, W/o Re) means δ = 0
without re-matching of non-local similar groups. From Fig. 13,
NGmeet(9) and NGmeet(δ = 2) perform almost the same in
different restoration tasks, indicating the efficiency of optimizing
A via (8) and (9), respectively. As the iterations, NGmeet(δ = 2)
can achieve higher PSNR values compared to NGmeet(δ = 0),
further suggesting the advantage of linear updating strategy of K .
In addition, NGmeet(δ = 0) can achieve higher PSNR values
compared to NGmeet(δ = 0, W/o Re). In summary, re-matching
of non-local similar groups and rank adaptation of the dimension
K in Algorithm 1 disturb the theoretical convergence analysis;
however, improve the performance.

Subsequently, we analyze parameter K , which is the key to
integrating the spatial and spectral information. The proposed
Algorithm 1 introduces a linear increase strategy (15) to estimate

 https://github.com/liuyang12/DeSCI
https://xu-yangyang.github.io/software.html
http://www.cs.rochester.edu/u/jliu/
https://sites.google.com/site/jamiezeminzhang/publications
https://sites.google.com/site/rshewei/home
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Fig. 10. Inpainting recovered image of different method from PaU dataset with SR as 0.05. The color image is composed of bands 80, 34, and 9 for
the red, green, and blue channels, respectively.

TABLE 7
Quantitative comparison of different algorithms in the simulated HSI inpainting experiments. The best results are in bold.

Image SR Index AWTC Tmac HaLRTC T-SVD TVTR LLRTC NLLRTC NGmeet
PSNR(dB) 18.02 25.27 19.81 27.90 27.93 32.80 36.80 38.10

CAVE 5% SSIM 0.500 0.746 0.645 0.781 0.753 0.896 0.978 0.983
SAM 37.573 25.602 23.068 16.304 17.517 10.279 3.498 3.364

PSNR(dB) 22.73 29.32 25.60 31.77 35.74 38.26 42.31 44.37
10% SSIM 0.653 0.799 0.798 0.882 0.944 0.965 0.992 0.994

SAM 22.725 16.452 16.656 11.781 7.529 5.916 2.202 2.157
PSNR(dB) 29.34 34.18 32.76 36.79 43.95 43.65 48.35 49.90

20% SSIM 0.807 0.928 0.934 0.952 0.991 0.988 0.997 0.997
SAM 13.553 6.777 8.421 7.247 2.887 3.409 1.459 1.427

PSNR(dB) 27.53 26.62 23.47 28.03 31.86 35.19 38.84 39.81
PaU 5% SSIM 0.825 0.768 0.659 0.823 0.912 0.956 0.983 0.986

SAM 7.613 12.328 9.306 10.863 5.961 5.772 3.264 2.974
PSNR(dB) 36.92 34.69 30.08 32.01 39.03 41.16 44.79 46.82

10% SSIM 0.967 0.949 0.910 0.912 0.981 0.987 0.995 0.996
SAM 3.592 3.678 6.188 8.902 3.246 3.393 2.174 1.792

PSNR(dB) 45.99 45.55 39.89 37.00 45.69 47.91 50.00 51.07
20% SSIM 0.995 0.995 0.988 0.961 0.995 0.997 0.998 0.998

SAM 2.026 2.003 2.932 6.500 2.004 1.824 1.455 1.304

dimension K in each iteration. The parameter K is controlled
by two values, i.e., the initialization of K and the stepsize δ.
In the experimental section, we adapt HySime [56] to estimate the
initialization ofK . The PaC image is chosen as the test image, and
the noise variance σ2

0 changes as 10, 30, 50 and 100. ParameterK
is initialized by HySime as 7, 6, 6, 5 for each noise variance cases,
respectively. To further verify the validity of the initialization,
we present the PSNR values achieved by NGmeet with different
initialization of K with a δ of 0 in Fig. 14. From the figure, it can
be observed that the initialization provided by HySime is positive
to result in the best results.

As analyzed in Section 3.2, with the increment of iterations,
the noise variance decreases and the parameter K needs to
increase to capture more detailed information. We adopt a linearly
increase strategy with stepsize δ. Tab. 8 presents the influence
of different δ with different σ2

0 values and the related initial K
by HySime. It can be observed that, the updating strategy of K
improves the performance. In this paper, we fix the stepsize δ as
2 for the whole experiments.

TABLE 8
The influence of different δ for NGmeet.

PSNR(dB) σ2
0 = 10 σ2

0 = 30 σ2
0 = 50 σ2

0 = 100
δ = 0 43.09 36.49 33.54 29.91
δ = 1 43.52 36.96 34.23 30.56
δ = 2 43.43 37.02 34.21 30.83
δ = 3 43.42 37.11 34.42 30.45

5.4.2 Computational efficiency

We demonstrate the efficiency of the proposed NGmeet. Compared
to the previous non-local denoising methods, i.e. KBR [13] and
LLRT [10], NGmeet includes the additional stage A. Tab. 9
presents the computational time of the different stages of the
three methods. These results, along with the complexity analysis
in Tab. 1 and 9 lead us to conclude that NGmeet takes little time to
project the original HSI onto a reduced image (stage A), however,
earning huge advantage in stage B including group matching step
and non-local denoising.

Fig. 15 displays the computational time and SSIM values of
NGmeet, KBR [13] and LLRT [10]. As illustrated, with a larger
number of bands, the computational time significantly increases
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Fig. 11. Spectral signature curves of pixel (50,50) reconstructed by all the compared methods on PaU with SR as 0.05.

Fig. 12. Reconstructed images of different methods from Landsat-7 dataset.

TABLE 9
Average running time (in seconds) of each stage for the non-local

low-rank based methods. stage A: spectral low-rank denoising; stage
B: spatial non-local low-rank denoising.

Time KBR LLRT NGmeet
(seconds) stage B stage B stage A stage B total

CAVE 4330 1212 3 201 204
PaC 828 488 2 37 39

WDC 3570 1573 3 45 48

for KBR and LLRT but keeps almost the same for NGmeet.
Besides, the best performance is also consistently best for NGmeet
with different number of bands.

5.4.3 Convergence
To show the convergence behavior of NGmeet, Fig. 16 presents the
PSNR values as the number of iterations increases on the WDC
dataset. The results show that our method can converge to a stable
PSNR value very quickly at different noise levels.

5.4.4 Choice of denoiser
In NGmeet, we choose WNNM [74] as the denoiser for each
non-local patch. However, WNNM is not the only choice for

our proposed NGmeet. Tab. 10 reports the results of NGmeet
when either WNNM or WSNM [88] is used as the denoiser. the
evaluation results of NGmeet with WSNM are a bit higher than
those with WNNM. Thus, our proposed paradigm is consistent
with other advanced denoiser, and better choice of the reduced
image denoiser can further improve the results.

5.4.5 Comparison with deep learning
Deep learning has also been introduced to denoise HSIs [67], [89].
In HSI-DeNet [67], the model is trained on the ICVL26 dataset
and tested on CAVE dataset. However, the authors [67] choose
only 10 bands (bands 15-24) for training. For fair comparison,
we also implement our proposed NGmeet on CAVE denoising
with 10 bands, referred to as NGmeet V1. Tab. 11 reports the
qualitative evaluation results of HSI-DeNet and NGmeet V1 and
the original NGmeet (here, the test results were obtained for all
CAVE bands, but only the related 10 bands were evaluated).
From the results, it can be observed that our proposed method
outperforms the deep learning based HSI-DeNet method, although
HSI-DeNet was trained on the information from the ICVL dataset.
From another side, by comparing NGmeet and NGmeet V1, it can

26. https://labicvl.github.io/Datasets Code.html

https://labicvl.github.io/Datasets_Code.html
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(a) CAVE toy denoising (σ2 = 10). (b) Pavia inpainting (SR = 0.05). (c) Pavia reconstruction (SR = 0.05).

Fig. 13. The comparison between the Algorithm 1 with different empirical settings. NGmeet(δ = 2) means δ = 2 in Algorithm 1, NGmeet(δ = 0)
means δ = 0, NGmeet(9) means adopting (9) to solve (7), NGmeet(δ = 0, W/o Re) means δ = 0 without re-matching of non-local similar groups.

TABLE 10
Quantitative comparison of NGmeet with different non-local low-rank denoising algorithms on the simulated HSI PaU experiments. The PSNR is in

dB, and best results are in bold.

σ 10 30 50 100
Index PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM

WNNM 43.17 0.992 2.61 36.97 0.971 4.30 34.29 0.948 5.18 30.61 0.890 6.86
WSNM 43.44 0.992 2.45 37.19 0.972 3.95 34.40 0.949 4.74 30.68 0.892 6.66

Fig. 14. PSNR values achieved by NGmeet with different parameter K
with δ = 0 on the PaC dataset.

(a) Time v.s. number of bands (b) SSIM v.s. number of bands

Fig. 15. The computational time and SSIM values of different numbers
of bands. WDC is used and noise variance is 100.

be concluded that when more bands are processed simultaneously,
better denoising results can be obtained by our method.

6 CONCLUSION

In this paper, we have provided a new perspective about how to
integrate spatial non-local similarity and global spectral low-rank
property, which are explored using a low-dimensional orthogonal
basis and reduced image denoising, respectively. The unified
paradigm was used for the HSI restoration tasks of denoising,
compressed HSI reconstruction and inpainting. We also proposed

Fig. 16. PSNR v.s. iteration of NGmeet. WDC is used.

TABLE 11
Quantitative comparison of between the proposed NGmeet and

HSI-DeNet.

20 50
Index PSNR SSIM SAM PSNR SSIM SAM

HSI-DeNet 38.45 0.9741 6.41 34.59 0.892 9.51
NGmeet V1 43.03 0.9807 5.27 37.34 0.928 8.70

NGmeet 45.01 0.9820 5.21 39.45 0.941 7.80

an alternating minimization method to solve the optimization
of the proposed NGmeet method. The high performance of our
method was confirmed by the simulated and real dataset exper-
iments on the three different restoration tasks. In our unified
spatial-spectral paradigm, the usage of WNNM [74] is not a must.
In future, we plan to adopt Convolutional Neural Network [66],
[67], [89], [90] to explore non-local similarity; and automated
machine learning [91], [92] to help tuning and configuring hyper-
parameters. Furthermore, we will also extend our model from
Gaussian noise to mixed noise processing.
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