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ABSTRACT
With the rapid development of knowledge bases (KBs), link predic-

tion task, which completes KBs with missing facts, has been broadly

studied in especially binary relational KBs (a.k.a knowledge graph)

with powerful tensor decomposition related methods. However,

the ubiquitous n-ary relational KBs with higher-arity relational

facts are paid less attention, in which existing translation based

and neural network based approaches have weak expressiveness

and high complexity in modeling various relations. Tensor decom-

position has not been considered for n-ary relational KBs, while

directly extending tensor decomposition related methods of binary

relational KBs to the n-ary case does not yield satisfactory results

due to exponential model complexity and their strong assumptions

on binary relations. To generalize tensor decomposition for n-ary

relational KBs, in this work, we propose GETD, a generalized model

based on Tucker decomposition and Tensor Ring decomposition.

The existing negative sampling technique is also generalized to

the n-ary case for GETD. In addition, we theoretically prove that

GETD is fully expressive to completely represent any KBs. Exten-

sive evaluations on two representative n-ary relational KB datasets

demonstrate the superior performance of GETD, significantly im-

proving the state-of-the-art methods by over 15%. Moreover, GETD

further obtains the state-of-the-art results on the benchmark binary

relational KB datasets.
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1 INTRODUCTION
In the past decade, the emerging of numerous web-scale knowledge

bases (KBs) such as Freebase [3], Wikidata [34], YAGO [31] and

Google’s Knowledge Graph (KG) [28], has inspired various appli-

cations, e.g., question answering [23], recommender systems [42]

and natural language processing (NLP) [22]. Most of these KBs are

constructed based on binary relations with triplet facts represented

as (head entity, relation, tail entity). However, due to enormous

missing facts, KBs face a fundamental issue of incompleteness,

which drives KB completion researches especially link prediction:
predicting whether two entities are related based on known facts

in KBs [2]. Extensive studies have been proposed to address this

problem, including translational distance models [6, 15, 21, 38],

neural network models [8, 27, 29], and tensor decomposition mod-

els [2, 17, 25, 32, 40]. Among them, the mathematically principled

tensor decomposition models achieve the best performance, with

strong capability to capture latent interactions between entities

and relations in KBs.

Despite the great attention in the binary relational KBs, higher-

arity relational KBs are less studied. In fact, n-ary a.k.a. multi-fold

relations play an important role in KBs. For instance, Purchase is a
common ternary (3-ary) relation, involved with a Person, a Product,
and a Seller. Sports_award is a 4-ary relation, involved with a Player,
a Team, anAward and a Season, giving an example ofMichael Jordan
from Chicago Bulls was awarded the MVP award in 1991-1992 NBA
season. Also, as observed in [39], more than 1/3 of the entities in

Freebase participate in the n-ary relation. Besides, since higher-arity

relations with more knowledge are closer to natural language, link

prediction in n-ary relational KBs provides an excellent potential

for question answering related NLP applications [9].

To handle link prediction in n-ary relational KBs directly, two

categories of models based on translational distance and neural

network are proposed recently. In terms of translational distance

models, m-TransH [39] directly extends TransH [38] for binary rela-

tions to the n-ary case. RAE [43] further integrates m-TransH with

multi-layer perceptron (MLP) by considering the relatedness of enti-

ties. However, since the distance-based scoring function of TransH

enforces constraints on relations, it fails to represent some binary

relations in KBs [17]. Accordingly, its extensions of m-TransH and

RAE are not able to represent some n-ary relations, which impairs

the performance. In terms of neural network models, NaLP [11]

leverages neural networks for n-ary relational fact modeling and

entity relatedness evaluation, and obtains the state-of-the-art re-

sults. Nevertheless, NaLP owes good performance to an enormous

amount of parameters, which contradicts the linear time and space

requirement for relational models in KBs [5]. Therefore, existing
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methods do not provide an efficient solution for link prediction in

n-ary relational KBs, and it is still an open problem to be addressed.

Although tensor decomposition models have been proved to

be very powerful in binary relational KBs by both the state-of-art

results [2] and theoretical guarantees on full expressiveness [17, 37],

there is no work to our knowledge adopting this type of model

for link prediction in n-ary relational KBs. A possible way is to

extend current tensor decomposition models from the binary case

to the n-ary case, while direct extensions yield serious issues. First,

several existing models [17, 32] leverage some tricky operations in

scoring functions for great performance, while these operations are

constrained on binary relations, which are not able to be applied in

n-ary relations. Second, powerful tensor decomposition models [2]

introduce exponential model complexity with the increase of arity,

which cannot be applied in large-scale KBs.

To solve link prediction problem in n-ary relational KBs as well

as tackle above challenges, we generalize tensor decomposition for

n-ary relational KBs. Specifically, we first extend TuckER [2], the

state-of-the-art model for binary relations, to n-TuckER for n-ary

relations, with Tucker decomposition utilized [33]. Note that the

higher-order core tensor in n-TuckER grows exponentially with

the arity, and excessively complex models usually overfit, which

implies poor performance. Thus, motivated by the benefits of tensor

ring (TR) decomposition [46] for neural network compression in

computer vision [26, 36], we integrate TR with n-TuckER together.

By representing the higher-order core tensor into a sequence of

3rd-order tensors, TR significantly reduces the model complexity

with performance enhanced. The overall model is termed as GETD,

Generalized Tensor Decomposition for n-ary relational KBs. Since

most KBs only provide positive observations, we also generalize

the existing negative sampling technique for efficiently training on

GETD. Considering the importance for a link prediction model to

have enough expressive power to represent various true and false

facts in KBs, we further prove that GETD is fully expressive.
The main contributions of this paper are summarized as follows:

• We investigate tensor decomposition for link prediction in n-ary

relational KBs, and identify the bottleneck of directly extending

existing binary relational models to the n-ary case, including the

binary relation constrained scoring function and exponential

model complexity.

• We propose GETD, a generalized tensor decomposition model

for n-ary relational KBs. GETD integrates TR decomposition

with Tucker decomposition, which scales well with both the

size and the arity of the KB. We also generalize the negative

sampling technique from the binary to the n-ary case. To the best

of our knowledge, GETD is the first model that leverages tensor

decomposition techniques for n-ary relational link prediction.

• We prove that GETD is fully expressive for n-ary relational KBs,

which is able to cover all types of relations, and can completely

separate true facts from false ones.

• We conduct extensive experiments on two representative n-ary

relational KB datasets. The results demonstrate that GETD out-

performs state-of-the-art n-ary relational link prediction mod-

els by 15%. Furthermore, GETD achieves close and even better

performance on two standard binary relational KB datasets com-

pared with existing state-of-the-art models.

We organize the rest of this paper as follows. Section 2 gives a

systematic review on the related works of link prediction in KBs.

Section 3 introduces the background of tensor decomposition and

notations. After that, the framework of GETD and theoretical anal-

yses are presented in Section 4. Section 5 evaluates the performance

on representative KB datasets and provides extensive analyses. In

light of our results, this paper is concluded in Section 6.

2 RELATEDWORK
We classify the relatedworks into two categories of binary relational

KBs and n-ary relational KBs.

2.1 Link Prediction on Binary Relational KBs
Basically, link prediction models embed entities and relations into

low-dimensional vector spaces, and define a scoring function with

embeddings to measure if a given fact is true or false. Based on

the scoring function design, the typical works in binary relational

KBs can be categorized into three groups: translational distance

models [6, 15, 21, 38], neural network models [8, 27, 29], and tensor

decomposition models [2, 17, 25, 32, 40].

Translational distance models measure the entity distance after a

translational operation carried out by the relation [35], and various

translational operations are exploited for distance-based scoring

functions [6, 15, 21, 38]. However, most translational distance mod-

els are found to have restrictions on relations [17, 35], thus can only

represent part of relations.

Neural network models [8, 27, 29] subtly design the scoring func-

tion with various neural network structures, which always require a

great many parameters to completely represent all relations [17, 35],

increasing training complexity and impractical for large-scale KBs.

With solid theory and great performance, tensor decomposition

models are more prevalent methods. In this aspect, the link predic-

tion task is framed as a 3rd-order binary tensor completion problem,

where each element corresponds to a triple, one for true facts while

zero for false/missing facts respectively. Thus, various tensor de-

composition models are proposed to approximate the 3rd-order

tensor. For example, DistMult [40] uses Canonical Polyadic (CP)

decomposition [13] with the equivalence of head and tail embed-

dings for the same entity, however, fails to capture the asymmetric

relation. Furthermore, SimplE [17] takes advantage of the inverse

of relations to address the asymmetric relation, while ComplEx

[32] leverages complex-valued embeddings for solution. Recently,

Tucker decomposition [33] is adopted in TuckER [2] for link predic-

tion, and achieves the state-of-the-art performance. Compared with

former works only using entity and relation embeddings to capture

the knowledge in KBs, TuckER additionally introduces the core

tensor to model interactions between entities and relations, which

further improves the expressiveness. According to the discussion,

generalizing tensor decomposition is promising for n-ary relational

link prediction.

2.2 Link Prediction on N-ary Relational KBs
Existing works on n-ary relational link prediction can be catego-

rized into two classes based on the scoring function: translational

distance models [39, 42] and neural network models [11].



The translational distance models of m-TransH [39] and RAE

[43] are the first series of works in this field. Based on the dis-

tance translation idea, m-TransH is proposed by extending TransH

[38] for the n-ary case, where entities are all projected onto the

relation-specific hyperplane, and the scoring function is defined

by the weighted sum of projection results. RAE further improves

m-TransH with the relatedness assumption that, the likelihood of

two entities co-participating in a common n-ary relational fact is

important for link prediction. MLP is utilized to model the related-

ness and coupled into the scoring function. Since these models are

directly extended from the binary case, the restrictions on relations

are also inherited with limited representation capability to KBs.

The neural network model, NaLP [11], is recently proposed for

the state-of-the-art performance in n-ary relational link prediction.

In NaLP, entity embeddings of an n-ary relational fact are first

passed to the convolution for feature extraction, then the overall

relatedness is modeled by FCN, whose output represents the evalu-

ation score. However, a great many parameters involved in NaLP

make the training intractable. Moreover, the latent connections

between similar relations are not considered, which further leads

to inferior empirical performance.

As previously discussed, tensor decomposition is a potential

solution for n-ary relational link prediction, while directly extend-

ing current binary relational tensor decomposition models to the

n-ary case is challenging with various bottlenecks. First, most CP-

based models achieve great performance mainly due to carefully

designed scoring functions with tricky operations. For instance, to

model all types of relations, the relation inverse in SimplE [17] and

complex-valued embeddings in ComplEx [32] are all binary rela-

tion constrained operations, which cannot find equivalents when it

comes to the n-ary case. Second, some direct extensions introduce

tremendous parameters like TuckER [2] to the n-ary case with expo-

nential model complexity, which is impractical and easily affected

by noise [17, 32]. Besides, other models like DistMult [40] force the

relation to be symmetric, thus are not able to completely represent

n-ary relational KBs. A recent work [10] explores DistMult with

convolution to the n-ary case, but the interaction of entities and re-

lations is not fully captured. Through our investigation, GETD is the

first generalized tensor decomposition model for n-ary relational

KBs with both performance and model complexity satisfied.

3 BACKGROUND AND NOTATION
3.1 Tensors and Notations
A tensor is a multi-order array, which generalizes the scalar (0th-

order tensor), the vector (1st-order tensor) and thematrix (2nd-order

tensor) to higher orders. We represent scalars with lowercase letters,

vectors with boldface lowercase letters, matrices with boldface

uppercase letters and higher-order tensors with boldface Euler

script letters. For indexing, let ai denote the i-th column of a matrix

A, xi1i2 · · ·in denote the (i1, i2, · · · , in )-th element of a higher-order

tensor X ∈ RI1×···×In , where Ii is the dimensionality of the i-th
mode. Especially, given a 3rd-order tensor Z ∈ RI1×I2×I3 , the i2-th
lateral slice matrix of Z is denoted by Z (i2) in the size of I1 × I3,
a.k.a., Z:i2: where the colon indicates all elements of a mode.

Table 1: Notations

Symbol Definition

X nth-order tensor ∈ RI1×···×In
xi1i2 · · ·in (i1, i2, · · · , in )-th element of X

G nth-order core tensor ∈ RJ1×···×Jn
A(k ) k-mode factor matrix ∈ RIn×Jn
a(k )j j-th column vector of A(k )

Zk k-th TR latent tensor ∈ Rrk×nk×rk+1

Zk (ik ) ik -th lateral slice matrix of Zk , ∈ Rrk×rk+1

r = [r1, r2, · · · , rn ] TR-ranks

ne , nr the number of entities/relations in the KB

de , dr entity/relation embedding dimensionality

ni 2nd-mode dimensionality of Zi
◦ vector outer product

×n tensor n-mode product

⟨·⟩ multi-linear dot product

trace{·} matrix trace operator

As for the operation on tensors, ◦ represents the vector outer
product, and ×i represents the tensor i-mode product. ⟨·⟩ repre-
sents themulti-linear dot product, written as ⟨a(1),a(2), · · · ,a(n)⟩ =∑
i a
(1)
i a(2)i · · ·a

(n)
i . trace{·} is the matrix trace operator, written as

trace{A} = ∑
i aii . More details about these operations and tensor

properties can be referred to [19]. The related notations frequently

used in this paper are listed in Table 1.

3.2 Tucker Decomposition
Tucker decomposition was initially proposed for three-order tensor

decomposition [33]. It can be generalized to higher order, which

decomposes a higher-order tensor into a set of factor matrices

and a relatively small core tensor. Given an nth-order tensor X ∈
RI1×···×In , Tucker decomposition can be denoted as,

X ≈ G ×1 A
(1) ×2 A

(2) · · · ×n A(n)

=

J1∑
j1=1

J2∑
j2=1

· · ·
Jn∑

jn=1

дj1 j2 · · ·jna
(1)
j1
◦ a(2)j2 ◦ · · · ◦ a

(n)
jn
, (1)

where G ∈ RJ1×···×Jn is the core tensor, Jk is the rank of k-th

mode, and {A(k ) |A(k ) ∈ RIk×Jk }nk=1
is the set of factor matrices.

Usually, J1, · · · , Jn are smaller than I1, · · · , In . Thus the number of

parameters is reduced compared with the approximated tensor X.

3.3 Tensor Ring (TR) Decomposition
Although Tucker decomposition approximates a higher-order ten-

sor with fewer parameters, the number of parameters scales expo-

nentially to the tensor order. Tensor ring (TR) decomposition [46],

on the other hand, represents a higher-order tensor by a sequence

of 3rd-order latent tensors multiplied circularly. Given an nth-order
tensor X ∈ RI1×···×In , TR decomposition can be expressed in an

element-wise form as,

xi1i2 · · ·in ≈trace{Z1(i1)Z2(i2) · · ·Zn (in )}=trace{
n∏

k=1

Zk (ik )}, (2)



Figure 1: The main framework of GETD model.

where {Zk |Zk ∈ Rrk×Ik×rk+1 , r1 = rn+1}nk=1
is the set of TR

latent tensors, and Zk (ik ) is in the size of Rrk×rk+1 accordingly.

For convenience, we also denote the above TR decomposition as

TR(Z1, · · · ,Zk ). Especially, the size of latent factors, concatenated
and denoted by r = [r1, r2, · · · , rn ] is called TR-ranks.

4 GETD: DESIGN AND MODEL
Borrowing the concept of n-ary relation [7, 9], the n-ary relational

fact can be defined as follows,

Definition 1 (n-ary relational fact). Given an n-ary rela-
tional KB with the set of relations R and the set of entities E, an n-ary
relational fact is an (n+1)-tuple (ir , i1, i2, · · · , in ) ⊆ R×E×E×· · ·×E
where R and E are called relation domain and entity domain.

Especially, ik is the k-th entity to the relation ir , belonging to

the k-th entity domain. In the binary case of (ir , i1, i2), i1 and i2 are

head entity and tail entity, and ir is the relation, respectively.
Then, the link prediction problem can be defined as follows,

Problem 1 (link prediction). Given an incomplete n-ary rela-
tional KB S = {(ir , i1, i2 · · · , in )}, the link prediction problem aims
to infer missing facts based on S.

In practice, given the relation and any n − 1 entities in an n-ary

relational fact, the problem is simplified as predicting the miss-

ing entity, e.g. predicting the 1-st entity of the incomplete n-ary

relational fact (ir , ?, i2, i3, · · · , in ).

4.1 Rethinking Tucker for KBs
From the point view of tensor completion, an n-ary relational KB

can be represented as a binary valued (n + 1)th-order KB tensor

X ∈ {0, 1}nr×ne×ne×···×ne (nr = |R |,ne = |E |), whose 1st-mode is

the relation mode, while the other modes are entity modes in the n-

ary relational fact. xir i1i2 · · ·in equal to one means the specific n-ary

relational fact is true, and zero for false/missing. The approximated

low-rank scoring tensor is denoted by X̂ ∈ Rnr×ne×ne×···×ne .
Accordingly, the link prediction on (ir , ?, i2, i3, · · · , in ) can be an-

swered by the entity withmaximum value or score in corresponding

mode vector of the scoring tensor.

Especially, the state-of-the-art binary relational link prediction

model TuckER [2] can be directly extended to the n-ary case termed

as n-TuckER, with relation embedding matrix R = A(1) ∈ Rnr×dr ,

and entity embedding matrix E that is equivalent for each mode

entities, i.e., E = A(2) = · · · = A(n+1) ∈ Rne×de , where dr and

de represent the dimensionality of relation and entity embedding

vectors respectively. The scoring function is defined as,

ϕ(ir , i1, i2, · · · , in ) = x̂ir i1i2 · · ·in
=W ×1 rir ×2 ei1 ×3 ei2 · · · ×n+1 ein , (3)

where W ∈ Rdr×de×de×···×de is the (n + 1)th-order core tensor,

rir and {ei }
in
i=i1

are the rows of R and E representing the relation

and the entity embedding vectors. Such a straightforward design

inevitably leads to a model complexity of

O(nede + nrdr + dne dr ),

which grows exponentially with de . Besides the unacceptable com-

plexity in parameters and increased training difficulty, n-TuckER

also faces the dilemma that, excessively complex models are easily

affected by noise and prone to overfitting, leading to poor testing

performance [17, 32].

4.2 The GETD Model
In this part, the model construction of GETD with the scoring

function is first introduced. Since the existing negative sampling

technique only limits on binary relational KBs, then we deal with

negative samples for the n-ary case.

4.2.1 The Scoring Function. Despite the model complexity and

overfitting, leveraging the (n+1)th-order core tensor to capture the
interaction of entities and relations is instructive that the similarity

between entities and relations is encoded in core tensor element.

Such Tucker interaction way ensures the strong expressive capabil-

ity of representing various facts in KBs. It can be envisioned that a

model with the Tucker interaction way as well as low complexity

is promising for link prediction in n-ary relational KBs.

To achieve this, TR decomposition draws our attention that a

higher-order tensor can be decomposed by quite a few parameters

in 3rd-order latent tensor sequences. This motivates the general

construction of GETD.

First, in the outer layer of GETD, the original KB tensor is

decomposed via Tucker decomposition following (3), which re-

serves Tucker interaction way as well as strong expressiveness.

Subsequently, in the inner layer, the intermediate core tensor W



is flexibly reshaped to a kth-order tensor Ŵ ∈ Rn1×···×nk with∏k
i=1

ni = dne dr (k ≥ n + 1) satisfied. Then TR decomposes the

reshaped tensor Ŵ into k latent 3rd-order tensors {Zi |Zi ∈
Rri×ni×ri+1 , r1 = rk+1

}ki=1
, reducing the number of parameters. The

main framework of GETD is shown in Figure 1 (in n=2 case). Specif-

ically, the left part of the figure depicts the construction of outer

layer with Tucker decomposition, while the right part presents

the TR construction procedure of inner layer. The corresponding

expression is,

ŵ j1 j2 · · ·jk = trace{Z1(j1)Z2(j2) · · ·Zk (jk )}. (4)

Overall, the scoring function of GETD can be expressed as,

ϕ(ir , i1, i2, · · · , in ) = Ŵ ×1 rir ×2 ei1 ×3 ei2 · · · ×n+1 ein

=TR(Z1, · · · ,Zk ) ×1 rir ×2 ei1 ×3 ei2 · · · ×n+1 ein . (5)

The model complexity of GETD is

O(nede + nrdr + kn3

max
), s.t. nmax = max

i=1, · · · ,k
ni ,

which is much lower than n-TuckER, and discussed in detail later.

Accordingly, with Tucker interaction way as well as low model

complexity, GETD not only guarantees strong expressive capability,

but also avoids the overfitting problem with many parameters,

which improves the testing performance.

4.2.2 Dealing with Negative Samples. In KBs, we usually only have

positive observations, i.e., which relation exists among different

sets of entities. Thus, even with the designed scoring function in

(5), we cannot train an embedding model due to lack of negative ob-

servations. In embedding of binary relational KBs, given a positive

triplet (ir , i1, i2), good candidates of negative samples [24] are

N(ir ,i1,i2) ≡ N
(1)
(ir ,i1,i2)

∪ N (2)(ir ,i1,i2)
≡ {(ir , ī1, i2) < S | ī1 ∈ E} ∪ {(ir , i1, ī2) < S | ī2 ∈ E} . (6)

Then, negative samples can be sampled from (6) by either fixed

or dynamic distribution [45]. More recently, multi-class log-loss

[16, 20] has developed as a replacement for the above sampling

scheme, which can offer better learning performance. Specifically,

it considers all candidates in (6) simultaneously, i.e.,

L(ir ,i1,i2) = L
(1)
(ir ,i1,i2)

+ L(2)(ir ,i1,i2), (7)

where

L(j)(ir ,i1, · · · ,in ) = −ϕ(ir , i1, · · · , in ) + log

©«e
ϕ(ir ,i1, · · · ,in )+

∑
x ∈N(j )(ir ,i1, ··· ,in )

eϕ(x )
ª®®®¬ .

Here, we extend the above multiclass log-loss to n-ary relational

KBs. For one positive n-ary relational fact (ir , i1, i2, · · · , in ),n groups
of negative sample candidates are generated from corresponding n
entity domains, defined as

N(ir ,i1,i2, · · · ,in ) ≡
n⋃

m=1

{(ir , · · · , ¯im , · · · ) < S | ¯im ∈ E} . (8)

Accordingly, with negative samples given in (8), the loss function

of GETD is defined as,

L(ir ,i1,i2, · · · ,in ) =
n∑
j=1

L(j)(ir ,i1,i2, · · · ,in ). (9)

Algorithm 1: Training Algorithm for GETD.

Input: training set S = {(ir , i1, i2 · · · , in )},
reshaped tensor order k , TR-ranks r ,
entity/relation embedding dimension de/dr ;

1 initialize embeddings E, R for e ∈ E and rel ∈ R, TR latent

tensors {Zi }ki=1
;

2 for t = 1, 2, · · · ,nepoch do
3 sample a mini-batch S

batch
⊆ S of sizemb ;

4 L ← 0;

5 for (jr , j1, j2, · · · , jn ) ∈ Sbatch do
6 construct negative sample set N(ir ,i1,i2, · · · ,in );
7 ϕ(jr , j1, j2, · · · , jn ) ← compute the score using (5);

8 L(jr , j1, j2, · · · , jn ) ← compute the loss using (9)

9 L ← L + L(jr , j1, j2, · · · , jn );
10 update parameters of embeddings and TR latent tensors

w.r.t. the gradients using ∇L;
Output: embeddings E,R and TR latent tensors {Zi }ki=1

.

4.3 Training
GETD is trained in a mini-batch way, where all observed facts and

each entity domain therein are considered for training. Algorithm

1 presents the pseudo-code of the training algorithm. With the

embedding dimensions and TR-ranks as input, the embeddings of

entities and relations as well as TR latent tensors, are randomly

initialized before training in line 1. During the training, line 3

samples a mini-batch S
batch

of sizemb , in which each observation

is considered for training in lines 4-10. Specifically, for each n-

ary relational fact in S
batch

, the algorithm constructs the negative

sample set N(ir ,i1,i2, · · · ,in ) following (8), as shown in line 6. Then,

the score of the observation as well as the negative samples are

computed using (5) in line 7, which are further utilized to compute

the multiclass log-loss with (9) in lines 8-9. Finally, the algorithm

updates the model parameters according to the loss gradients.

4.4 Complexity Analysis
According to the model description, the entity and relation em-

beddings of GETD cost O(nede + nrdr ) parameters. Since each TR

latent tensor is 3rd-order with Zi ∈ Rri×ni×ri+1
and TR-rank ri is

usually smaller than ni , the k TR latent tensors cost O(kn3

max
) pa-

rameters in sum. Thus, the model complexity of GETD is obtained

as O(nede + nrdr + kn3

max
), while GETD also retains the efficiency

benefits of tensor mode product in linear time complexity.

Moreover, due to the constraint

∏k
i=1

ni = d
n
e dr in GETD, if TR

latent tensors are in the same shape, we can obtain the equation

of nmax = (dne dr )1/k . When applied in large-scale KBs with over

thousands of entities [4, 31], GETD with high reshaped tensor order

(larger k) derives that kn3

max
≪ nede , which reduces to the linear

model complexity of O(nede + nrdr ) to KB sizes.

We compare GETD with state-of-the-art n-ary relational link

prediction models, in terms of scoring function, expressiveness and

the model complexity in Table 2. Among the models, n-TuckER and

n-CP are the extensions of Tucker [2] and CP [13], respectively.



Table 2: Scoring functions of state-of-the-art n-ary relational link predictionmodels for a given fact (ir , i1, i2, · · · , in ), with their
expressiveness, and significant terms of their model complexity. ne and nr are the number of entities and relations, while de
and dr are the dimensionality of entity and relation embeddings respectively. k and nmax are the number and the maximum
size of TR latent tensors. min(·) is the element-wise minimizing operation, [·, ·] and [·; ·] denote hstack and vstack operation.

Model Scoring Function Fully Expressive Model Complexity

RAE [43] ∥∑n
j=1

aj (ei j −w⊤ir ei jwir ) + rir ∥p No O(nede + nrde )
NaLP [11] FCN2(min(FCN1(Conv([Wr , [ei1 ;ei2 ; · · · ;ein ]])))) No O(nede + nnrdr )

n-CP (extension of [13]) ⟨rir ,e
(1)
i1
,e(2)i2 , · · · ,e

(n)
in
⟩ Yes O(nnede + nrde )

n-TuckER (extension of [2]) W ×1 rir ×2 ei1 ×3 ei2 · · · ×n+1 ein Yes O(nede + nrdr + dne dr )
GETD (this paper) TR(Z1, · · · ,Zk ) ×1 rir ×2 ei1 ×3 ei2 · · · ×n+1 ein Yes O(nede + nrdr + kn3

max
)

n-TuckER costs exponential model complexity due to the higher-

order core tensor, which is unacceptable for large-scale n-ary rela-

tional KBs. Moreover, the explosion of the number of parameters

makes n-TuckER prone to overfitting, as shown in experimental

results of Section 5. n-CP requires different embeddings for one

entity in different entity domains, which brings the complexity of

O(nnede + nrde ). As stated before, GETD has linear model com-

plexity O(nede + nrde ) to KB sizes in practical. Therefore, GETD

achieves the lowest model complexity in tensor decomposition

models with the best performance.

As introduced in Section 2, RAE [43] is a translational distance

model, and NaLP [11] is a neural network model. Although these

two models achieve similar model complexity to GETD, they are

short of expressive power, thus perform badly, which is proved

by link prediction performance in Section 5 later. Thus, GETD

performs best on both model complexity and expressiveness.

4.5 Full Expressiveness
A link prediction model is fully expressive if for any ground truth

over all entities and relations, there exist embeddings that accu-

rately separate the true n-ary relational facts from the false ones,

i.e., the link prediction model can recover any given KB tensors by

the assignment of entity and relation embeddings [2, 17, 32, 35].

The full expressiveness guarantees the completeness of link pre-

diction and KB completion. Especially, if a link prediction model

is not fully expressive, it means that the model can only represent

a part of KBs with prior constraints, which leads to unwarranted

inferences [12]. For instance, DistMult is not fully expressive, and

forces relations to be symmetric, i.e., it can represent KBs with only

symmetric relations [17], while KBs with asymmetric and inverse

Table 3: Dataset Statistics. Here “-3” and “-4” denote the 3-
ary and 4-ary relational KB datasets, respectively.

Dataset #Entities #Relations #Train #Valid #Test

WikiPeople-3 12,270 66 20,656 2,582 2,582

WikiPeople-4 9,528 50 12,150 1,519 1,519

JF17K-3 11,541 104 27,635 3,454 3,455

JF17K-4 6,536 23 7,607 951 951

Synthetic10-3 10 2 400 50 50

Synthetic10-4 10 2 1,200 150 150

WN18 40,943 18 141,442 5,000 5,000

FB15k 14,951 1,345 483,142 50,000 59,071

relations cannot be completely represented. Thus, the upper bound

of learning capacity from a not fully expressive model is low. In

contrast, fully expressive models enable KB representation with

various types of relations, fully representing the knowledge.

Formally, we have the following theorem to establish the full

expressiveness of GETD.

Theorem 1. For any ground truth over entities E and relations
R, there exists a GETD model that represents that ground truth (See
proof in Appendix A).

5 EXPERIMENTS AND RESULTS
5.1 Experimental Setup
5.1.1 Datasets. We evaluate our model with two real datasets

across 3-ary and 4-ary relational KBs, one synthetic dataset as

well as two benchmark datasets on binary relations, which are

introduced as follows.

WikiPeople [11]: This is a public n-ary relational dataset ex-

tracted fromWikidata concerning entities of type human. WikiPeo-

ple is quite practical, where data incompleteness, insert and update

are universal. Due to the sparsity of higher-arity (≥ 5) facts in

WikiPeople, we filter out all 3-ary and 4-ary relational facts therein,

named as WikiPeople-3 and WikiPeople-4, respectively.

JF17K [43]: This is a public n-ary relational dataset developed

from Freebase, whose facts are in good quality. Similar to WikiPeo-

ple, the higher-arity facts in JF17K are also sparse, thus we filter

out all 3-ary and 4-ary relational facts therein, named as JF17K-3

and JF17K-4, respectively.

Synthetic10: To assess the relationship between the number of

parameters and overfitting, we construct the toy dataset across 3-ary

and 4-ary relational facts, named as Synthetic10-3 and Synthetic10-

4, whose KB tensors are randomly generated by CP decomposition

with tensor rank equal to one [19]. There are only 10 entities and 2

relations in Synthetic10.

WN18 [4]: This binary relational dataset is a subset of WordNet,

a database with lexical relations between words.

FB15k [5]: This binary relational dataset is a subset of Freebase,

a database of real world facts including films, sports, etc.

Besides, facts in first three datasets are randomly split into

train/valid/test sets by a proportion of 8:1:1. The train/valid/test

sets of WN18 and FB15k provided in [6] are used for evaluation.

The datasets statistics are summarized in Table 3.



Table 4: Link prediction results on WikiPeople dataset.

Model

WikiPeople-3 WikiePeople-4

MRR Hits@10 Hits@3 Hits@1 MRR Hits@10 Hits@3 Hits@1

RAE 0.239 0.379 0.252 0.168 0.150 0.273 0.149 0.080

NaLP 0.301 0.445 0.327 0.226 0.342 0.540 0.400 0.237

n-CP 0.330 0.496 0.356 0.250 0.265 0.445 0.315 0.169

n-TuckER 0.365 0.548 0.400 0.274 0.362 0.570 0.432 0.246

GETD 0.373 0.558 0.401 0.284 0.386 0.596 0.462 0.265

Table 5: Link prediction results on JF17K dataset.

Model

JF17K-3 JF17K-4

MRR Hits@10 Hits@3 Hits@1 MRR Hits@10 Hits@3 Hits@1

RAE 0.505 0.644 0.532 0.430 0.707 0.835 0.751 0.636

NaLP 0.515 0.679 0.552 0.431 0.719 0.805 0.742 0.673

n-CP 0.700 0.827 0.736 0.635 0.787 0.890 0.821 0.733

n-TuckER 0.727 0.852 0.761 0.664 0.804 0.902 0.841 0.748

GETD 0.732 0.856 0.764 0.669 0.810 0.913 0.844 0.755

5.1.2 Metrics. We evaluate the link prediction performance with

two standard metrics: mean reciprocal rank (MRR) and Hits@k ,
k ∈ {1, 3, 10} [2, 6, 11, 17, 32, 40]. For each testing n-ary relational

fact, one of its entities is removed and replaced by all entities in E,
leading to |E | tuples, which are scored by the link prediction model.

The entities in all entity domains are tested. The ranking of the

testing fact is obtained by sorting evaluation scores in descending

order. MRR is the mean of the inverse of rankings over all testing

facts, while Hits@k measures the proportion of top k rankings.

Both metrics are in filtered setting [4]: the ranking of the testing

fact is calculated among facts not appeared in train/valid/test sets.

The aim is to achieve high MRR and Hits@k .

5.1.3 Baselines. We compare GETD with the following n-ary rela-

tional link prediction baselines:

• RAE [43] is a translational distancemodel, extending TransH

[38] to m-TransH with relatedness combined
1
.

• NaLP [11] is a neural network model, which achieves the

state-of-the-art n-ary relational link prediction performance
2
.

• n-CP is an extension of CP decomposition [13], firstly ap-

plied in n-ary relational link prediction in this paper.

• n-TuckER is an extension of TuckER [2] with Tucker de-

composition utilized, also firstly applied in n-ary relational

link prediction in this paper.

Besides, we compare GETD with state-of-the-art models in binary

relational KBs, including TransE [6], DistMult [40], ConvE [8],

ComplEx [32], SimplE [17], and TuckER [2].

5.1.4 Implementation. The implementation of GETD is available

at Github
3
. For experimental fairness, we fix entity and relation

embedding sizes of GETD, n-CP and n-TuckER. For 3-ary relational

datasets WikiPeople-3 and JF17K-3, we set entity and relation em-

bedding sizes to de = dr = 50, reshaped tensor order to k = 4, TR-

ranks and TR latent tensor dimensions to ri = ni = 50, while due

1
https://github.com/lijp12/SIR

2
https://github.com/gsp2014/NaLP

3
https://github.com/liuyuaa/GETD

to the quite smaller numbers of entities and relations, the settings

in 4-ary relational datasets are de = dr = 25, k = 5, ri = ni = 25.

Besides, batch normalization [14] and dropout [30] are used to con-

trol overfitting. All hyperparameters except embedding sizes are

tuned with Optuna [1], a Bayesian hyperparameter optimization

framework, and the search space of learning rate is [0.0001, 0.1]
with learning rate decay chosen from {0.9, 0.995, 1}, and dropout

ranges from 0.0 to 0.5. Each model is evaluated with 50 groups

of hyperparameter settings. Above three models are trained with

Adam [18] using early stopping based on validation set MRR with

no improvement for 10 epochs. As for RAE and NaLP, we use the

optimal settings reported in [43] and [11], respectively.

5.2 N-ary Relational Link Prediction
Table 4 and 5 present the link prediction results on two datasets

across 3-ary and 4-ary relational KBs. From the results, we can

observe that our proposed GETD achieves the best performance

on all metrics across all datasets. Especially, tensor decomposition

models of GETD, n-CP and n-TuckER always outperform the trans-

lational distance model RAE and the neural network model NaLP.

For example, on JF17K, compared with existing state-of-the-art

model NaLP, GETD improves MRR by 0.22 and Hits@1 by 55% for

3-ary relational facts, while the improvement for 4-ary relational

facts is 0.09 and 12%. For WikiPeople, GETD improves MRR by 0.07

and Hits@1 by 25% on WikiPeople-3, and improves MRR by 0.04

and Hits@1 by 12% on WikiPeople-4. These considerable improve-

ments further confirm the strong expressive power of the proposed

tensor decomposition models. Moreover, the great performance on

WikiPeople indicates that GETD is robust and able to handle prac-

tical KB issues like data incompleteness, insert and update. Note

that the relatively less improvement on 4-ary relational facts may

partly owe to the sparsity of higher-arity facts in datasets.

As for the three tensor decomposition models, n-CP is relatively

weak due to the difference of embeddings in different entity domains

[32], while GETD and n-TuckER capture the interaction between

entities and relations with TR latent tensors or core tensors. On

https://github.com/lijp12/SIR
https://github.com/gsp2014/NaLP
https://github.com/liuyuaa/GETD


the other hand, GETD also outperforms n-TuckER owing to the

simplicity with much fewer parameters, while the parameter-cost

core tensor in n-TuckER increases the complexity of optimization

and further overfits. Without the early stopping trick, the perfor-

mance of n-TuckER seriously degrades and quickly overfits, which

is shown in the following. Besides, we run GETD on the largest

dataset WikiPeople-3 with a Titan-XP GPU. An epoch training

takes about 28s and total training takes 1h, while inference takes

only 5s. Overall, the results show the efficiency and robustness of

GETD for link prediction in n-ary relational KBs.

5.3 Overfitting Phenomenon
Models like n-TuckER with a large amount of parameters easily

overfit to the training data, impairing the testing performance. To

verify this, we cast the early stopping trick in three tensor decom-

position models, and test if there exists the overfitting phenomenon

using WikiPeople-4. Accordingly, the training curves in terms of

MRR and loss are plotted in Figure 2(a) and 2(b), respectively.

(a) MRR v.s. epoch. (b) Loss v.s. epoch.

Figure 2: Overfitting in n-TuckER observered from MRR
(left) and loss (right). Evaluated on WikiPeople-4.

From the results, we can clearly observe the overfitting phenom-

enon in training process of n-TuckER. In Figure 2(a), as training

going on, the MRR of n-TuckER increases first and then quickly

decreases, while the MRR of the other two models increases to

convergence. Moreover, GETD outperforms n-CP due to its strong

expressive power. As for loss curves, the train losses of all three

models keep decreasing, while the test loss of n-TuckER increases

after 20 epochs of training, compared with the convergence in

GETD and n-CP test loss curves. It mainly caused by the model

complexity that, the numbers of parameters in GETD and n-CP are

0.4 million and 0.9 million, while 10 million in n-TuckER.

(a) Synthetic10-3. (b) Synthetic10-4.

Figure 3: MRR for n-TuckER and GETD for different
embeddings sizes. Evaluated on Synthetic10-3 (left) and
Synthetic10-4 (right).

To further reveal the relationship between the overfitting and

the number of parameters, we evaluate the MRR for different em-

bedding sizes on Synthetic10 in Figure 3. The early stopping is

cast, and the MRR after 200 epochs of training are reported. The

results of n-TuckER in both 3-ary and 4-ary relational datasets

show that, increasing of embedding sizes results in a quality fall

in the case of MRR, which means overfitting of n-TuckER. This

phenomenon is mainly caused by low-rank property of KB tensors.

Takingde = dr = 50 in Synthetic10-3 as an example, the core tensor

in n-TuckER costs 50 × 50 × 50 × 50 = 6.25 million parameters,

while the TR latent tensors in GETD cost only 4 · 1 × 50 × 1 = 200

parameters with TR-ranks equal to one. Therefore, using n-TuckER

with large embedding sizes to approximate the low-rank KB ten-

sors is intractable and prone to overfitting. However, for general

KBs, embedding sizes should be large enough for strong expressive

power, which is a contradiction. In comparison, GETD is capable

of coping with overfitting and expressiveness together based on

embedding sizes as well as TR-ranks, which is much more flexi-

ble. The flexibility as well as expressiveness thus support the great

performance of GETD in Table 4 and 5.

5.4 Influence of Parameters
Since the embedding sizes are important factors to link prediction

models with expressiveness [2, 8, 32], while TR-ranks, as well as the

reshaped tensor order are unique hyper-parameters of GETD, deter-

mining the model complexity and performance, now we investigate

the impacts of these parameters.

5.4.1 Influence of Embedding Sizes de ,dr . The MRR and the num-

ber of parameters of three tensor decomposition models under

different embedding sizes are evaluated on WikiPeople-4 with TR-

ranks equal to embedding sizes. The results are plotted in Figure 4.

(a) MRR v.s. de , dr . (b) #Paramters v.s. de , dr .

Figure 4:MRR (left) and number of parameters (right) under
different embedding sizes. Evaluated on WikiPeople-4.

According to Figure 4(a), GETD always outperforms n-TuckER

and n-CP. The MRR of GETD increases globally with the increase

of embedding sizes, and gradually becomes smooth. While the

MRR of n-TuckER is not stable even with large embedding sizes

when early stopping applied. For example, at embedding size 35,

GETD increases MRR by 49% for n-CP, and 2.8% for n-TuckER.

Moreover, the MRR of GETD reaches 0.372 at embedding size 15,

which is better than the performance of n-TuckER at embedding

size over 30. On the other hand, GETD uses the least parameters in

three models, which is shown in Figure 4(b). For embedding size

30, n-TuckER costs 24 million parameters with core tensor using

30
5 = 24.3 million, n-CP costs 1.14 million parameters, while GETD



Table 6: Link prediction results on WN18 and FB15k. Results of TransE and DistMult are copied from [32]. Other results are
copied from the corresponding original papers [2, 8, 17, 32]

.

Model

WN18 FB15k

MRR Hits@10 Hits@3 Hits@1 MRR Hits@10 Hits@3 Hits@1

TransE [6] 0.454 0.934 0.823 0.089 0.380 0.641 0.472 0.231

DistMult [40] 0.822 0.936 0.914 0.728 0.654 0.824 0.733 0.546

ConvE [8] 0.943 0.956 0.946 0.935 0.657 0.831 0.723 0.558

ComplEx [32] 0.941 0.947 0.945 0.936 0.692 0.840 0.759 0.599

SimplE [17] 0.942 0.947 0.944 0.939 0.727 0.838 0.773 0.660

TuckER [2] 0.953 0.958 0.955 0.949 0.795 0.892 0.833 0.741

GETD 0.948 0.954 0.950 0.944 0.824 0.888 0.847 0.787

only costs 0.42 million parameters with TR latent tensors using

5 · 30
3 = 0.13 million, 1.7% of n-TuckER parameters. The results are

accord with complexity analysis in Section 4.4, and further indicate

that GETD with relatively small embedding sizes is able to obtain

good performance, which can be applied for large-scale KBs.

5.4.2 Influence of TR-ranks r . Since the TR-ranks can largely deter-
mine the number of TR latent tensor parameters, and make GETD

model more flexible, we reveal the relationship between link pre-

diction performance and TR-ranks on WikiPeople-4 and JF17K-3,

as shown in Figure 5. From the results, we can observe that the

link prediction performance is affected only when TR-ranks are

very small (less than 5), indicating that GETD is not sensitive to

TR-ranks. When TR-ranks vary from 20 to 60 on JF17K-3, the MRR

is rather stable, and a similar trend can be found on WikiPeople-

4. This implies that TR tensors with TR-ranks about 20 are often

enough to capture the latent interactions between entities and rela-

tions for given datasets. Based on this, the number of parameters

for GETD can be further reduced to control model complexity for

large-scale KBs.

(a) WikiPeople-4. (b) JF17K-3.

Figure 5: MRR of GETD on WikiPeople-4 (left) and JF17K-3
(right) under different TR-ranks.

5.4.3 Influence of Reshaped Tensor Order k . As a key step of con-

necting Tucker and TR in GETD, the effect of reshaped tensor order

is investigated on WikiPeople-4 and JF17K-3, exhibited in Figure 6.

For WikiPeople-4, the embedding size is set to 25 and thus

the original core tensor is W ∈ R25×25×25×25×25
, leading to the

5th-order reshaped tensor Ŵ ∈ R25×25×25×25×25
, the 6th-order re-

shaped tensor Ŵ ∈ R5×25×25×25×25×5
, etc. It can be observed that,

GETD with different orders of reshaped tensors always achieves

higher MRR compared with n-TuckER, and the best one increases

(a) WikiPeople-4, de = dr = 25. (b) JF17K-3, de = dr = 64.

Figure 6: MRR of GETD on WikiPeople-4 (left) and JF17K-3
(right) under different reshaped tensor orders.

MRR by 0.024, which is decomposed by 5 TR latent tensors. Over-

all, the expressive power of GETD decreases with the increase of

reshaped tensor order.

As for JF17K-3, the embedding size is set to 64 so that the re-

shaped tensor is cubic, i.e., eachmode is in the same size [19]. For ex-

ample, the 6th-order reshaped tensor becomesŴ ∈ R16×16×16×16×16×16
,

and the size of each mode for 8th-order tensor becomes 4. Similarly,

GETD with the least order of reshaped tensor achieves the highest

MRR. Moreover, Figure 6(b) clearly shows the negative correla-

tion between MRR and reshaped tensor order, which is in accord

with the above results. This phenomenon is mainly because the

higher order involves more TR latent tensors, increasing the opti-

mization complexity. On the other hand, since GETD requires that∏k
i=1

ni = dne dr , the higher order k also means the smaller nmax,

which reduces the number of parameters. Thus, the reshaped tensor

order in GETD should be appropriately determined considering

both link prediction performance and model complexity.

5.5 Binary Relational Link Prediction
To investigate the robustness as well as representation capability

of our proposed GETD model, we evaluate the performance of

GETD model on WN18 and FB15k. The experimental settings are

the same as in n-ary relational link prediction. The embedding sizes

of GETD are set to 200, which is similar to the setting in TuckER

[33]. The reshaped tensor order k is 3, TR-ranks ri and TR latent

tensor dimensions ni are set to 50 and 200, respectively.

Table 6 summarizes the results of GETD and the state-of-the-art

models on two datasets. According to the results, GETD achieves

the second best performance on WN18, with a quite small MRR

gap of 0.005 to TuckER. Moreover, TR latent tensors in GETD costs



3 · 50 × 200 × 50 = 1.5 million parameters, only 1/8 of core tensor

parameters in TuckER (200× 200× 200 = 8 million). Thus, GETD is

able to obtain better performance with larger embedding sizes but

similar number of parameters. As for FB15k, GETD outperforms

all state-of-the-art models, and increases MRR by 0.03. Also, GETD

increases the toughest metric Hits@1 by 4% on FB15k. These results

demonstrate that, GETD is robust and works well in representing

KBs with different arity relations.

6 CONCLUSION
This work proposed GETD, a fully expressive tensor decomposition

model for link prediction in n-ary relational KBs. Based on the

expressiveness of Tucker decomposition as well as the flexibility

of tensor ring decomposition, GETD is able to capture the latent

interactions between entities and relations with a small number of

parameters. Experimental results demonstrate that GETD outper-

forms the state-of-the-art models for n-ary relational link prediction

and achieves close and even better performance on standard binary

relational KB datasets.

Considering the benefits of parameter reduction with higher-

order reshaped tensor, we plan to extend GETD with appropriate

optimization techniques so that GETD with higher-order reshaped

tensor can also achieve comparable performance. Besides, GETD

only uses observed facts for link prediction, while incorporating

GETD with background knowledge such as logical rules and entity

properties may bring performance enhancement. Finally, we also

consider using automated machine learning techniques to search

the scoring function from the data [41, 44].
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A PROOFS
A.1 Preliminaries
Now, we first introduce lemmas that will be used later in the proof.

Lemma 1. For any ground truth over entities E and relations R,
there exists an n-TuckER model with entity embeddings of dimension-
ality de = |E | and relation embeddings of dimensionality dr = |R |
that represents that ground truth.

Proof. Let ei1 ,ei2 , · · · ,ein be the ne -dimensional one-hot bi-

nary vector representation of entities i1, i2, · · · , in , and rir the nr -
dimensional one-hot binary vector representation of a relation ir .
We let the ir -th, i1-th, i2-th, · · · in-th element respectively of the

corresponding vectors rir ,ei1 ,ei2 , · · · ,ein be 1 and all other ele-

ments 0. Further, we set thewir i1i2 · · ·in of the core tensor to 1 if the

fact (ir , i1, i2, · · · , in ) holds and 0 otherwise. Thus the tensor prod-

uct of these entity embeddings and the relation embedding with

the core tensor, accurately represents the original KB tensor. □

Lemma 2. Given anykth-order binary tensorW ∈ {0, 1}n1×n2×···×nk ,
there exists a CP model with rank rCP =

∏k
i=1

ni , that completely
decomposesW.

Proof. SinceW ∈ {0, 1}n1×n2×···×nk , we can use rCP =
∏k

i=1
ni

zero/one-hot tensors {W(r ) |W(r ) ∈ {0, 1}n1×n2×···×nk }rCPr=1
to rep-

resent W, s.t., w
(1)
1· · ·1 = w1· · ·1, while other elements in W(1) are

zeros, w
(r )
j (r )
1

j (r )
2
· · ·j (r )k

= w
j (r )
1

j (r )
2
· · ·j (r )k

, while other elements in W(r )

are zeros, etc. Finally,w
(rCP )
n1n2 · · ·nk = wn1n2 · · ·nk , while other elements

in W(rCP ) are zeros. Moreover,W(r ) can be decomposed by rank-

one CP decomposition as,

W(r ) = u(1)r ◦u
(2)
r ◦ · · · ◦u

(k )
r , (10)

s.t. w
(r )
jr
1
jr
2
· · ·jrk
= u
(1)
r (jr1 ) · u

(2)
r (jr2 ) · · · · · u

(k )
r (jrk ) (11)

where u(i)r is the ni -dimensional zero/one-hot vector, and u
(i)
r (j) is

the j-th element of the vector. Therefore, by assigning u
(1)
r (jr1 ) =

u
(2)
r (jr2 ) = · · · = u

(k )
r (jrk ) = w

(r )
jr
1
jr
2
· · ·jrk

, and other elements in u(i)r
being zeros, the binary tensorW can be completely decomposed

by CP decomposition via the set of vectors {u(i)r | i = 1, 2, · · ·k, r =
1, 2, · · · , rCP , rCP =

∏k
i=1

ni } as,

W =

rCP∑
r=1

W(r ) =
rCP∑
r=1

u(1)r ◦u
(2)
r ◦ · · · ◦u

(k )
r . (12)

□

Lemma 3. Cannonical polyadic (CP) decomposition can be viewed
as a special case of tensr ring (TR) decomposition. Given a kth-order
binary tensorW ∈ {0, 1}n1×n2×···×nk with its CP decomposition as
(12), it can also be written in TR decomposition form as,

W =

rCP∑
r=1

u(1)r ◦u
(2)
r ◦ · · · ◦u

(k )
r = TR(Z1,Z2, · · · ,Zk ), (13)

s.t. Zi (ji ) = diaд(u(i)(ji )), ∀i = 1, 2, · · · ,m (14)

whereZi ∈ {0, 1}rCP×ni×rCP ,u(i)(ji ) = [u(i)
1
(ji ),u(i)

2
(ji ), · · · ,u(i)rCP (ji )].

See proof in [46].

A.2 Theorem 1
Proof. According to Lemma 1, n-TuckER is fully expressive

by setting the embeddings as well as the core tensor, in which

the core tensor is set to an (n + 1)-th order binary tensor W ∈
{0, 1}nr×ne×ne×···×ne .

In GETD,W is reshaped into a kth-order reshaped tensor
ˆW ∈

{0, 1}n1×···×nk , which is further decomposed by TR decomposi-

tion. Keeping the embedding settings as the ones in Lemma 1, we

only need to prove that TR decomposition is able to recover any

given tensor
ˆW. On the other hand, with Lemma 2,

ˆW is able

to be completely recovered via CP decomposition. Moreover, the

CP decomposition can be written as a special case of TR decom-

position by Lemma 3, which derives TR latent tensors {Zi |Zi ∈
{0, 1}rCP×ni×rCP }ki=1

. Overall, following the settings of embeddings

in Lemma 1 and TR latent tensors in Lemma 3, GETD is proved

to be fully expressive with entity embeddings of dimensionality

ne = |E | and relation embeddings of dimensionality dr = |R |. □
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