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Abstract
To meet the standard of differential privacy, noise
is usually added into the original data, which
inevitably deteriorates the predicting performance
of subsequent learning algorithms. In this paper,
motivated by the success of improving predicting
performance by ensemble learning, we propose
to enhance privacy-preserving logistic regression
by stacking. We show that this can be done ei-
ther by sample-based or feature-based partitioning.
However, we prove that when privacy-budgets are
the same, feature-based partitioning requires fewer
samples than sample-based one, and thus likely
has better empirical performance. As transfer
learning is difficult to be integrated with a differ-
ential privacy guarantee, we further combine the
proposed method with hypothesis transfer learning
to address the problem of learning across different
organizations. Finally, we not only demonstrate
the effectiveness of our method on two benchmark
data sets, i.e., MNIST and NEWS20, but also apply
it into a real application of cross-organizational
diabetes prediction from RUIJIN data set, where
privacy is of a significant concern. 1

1 Introduction
In recent years, data privacy has become a serious con-
cern in both academia and industry [Dwork et al., 2006;
Chaudhuri et al., 2011; Dwork and Roth, 2014; Abadi et
al., 2016]. There are now privacy laws, such as Europe’s
General Data Protection Regulation (GDPR), which regulates
the protection of private data and restricts data transmission
between organizations. These raise challenges for cross-
organizational machine learning [Pathak et al., 2010; Hamm
et al., 2016; Papernot et al., 2017; Xie et al., 2017], in which
data have to be distributed to different organizations, and the
learning model needs to make predictions in private.

A number of approaches have been proposed to ensure
privacy protection. In machine learning, differential privacy
[Dwork and Roth, 2014] is often used to allow data be
exchanged among organizations. To design a differentially

1Correspondence to X. Guo at guoxiawei@4paradigm.com

private algorithm, carefully designed noise is usually added to
the original data to disambiguate the algorithms. Many stan-
dard learning algorithms have been extended for differential
privacy. These include logistic regression [Chaudhuri et al.,
2011], trees [Emekçi et al., 2007; Fong and Weber-Jahnke,
2012], and deep networks [Shokri and Shmatikov, 2015;
Abadi et al., 2016]. In particular, linear models are simple
and easy to understand, and their differentially private vari-
ants (such as privacy-preserving logistic regression (PLR))
[Chaudhuri et al., 2011]) have rigorous theoretical guarantees
[Chaudhuri et al., 2011; Bassily et al., 2014; Hamm et
al., 2016; Kasiviswanathan and Jin, 2016]. However, the
injection of noise often degrades prediction performance.

Ensemble learning can often signficantly improve the per-
formance of a single learning model [Zhou, 2012]. Pop-
ular examples include bagging [Breiman, 1996a], boosting
[Friedman et al., 2000], and stacking [Wolpert, 1992]. These
motivate us to develop an ensemble-based method which can
benefit from data protection, while enjoying good prediction
performance. Bagging and boosting are based on partitioning
of training samples, and use pre-defined rules (majority
or weighted voting) to combine predictions from models
trained on different partitions. Bagging improves learning
performance by reducing the variance. Boosting, on the other
hand, is useful in converting weak models to a strong one.
However, the logistic regression model, which is the focus in
this paper, often has good performance in many applications,
and is a relatively strong classifier. Besides, it is a convex
model and relatively stable.

Thus, in this paper, we focus on stacking. While stack-
ing also partitions the training data, this can be based on
either samples [Breiman, 1996b; Smyth and Wolpert, 1999;
Ozay and Vural, 2012] or features [Boyd et al., 2011].
Multiple low-level models are then learned on the different
data partitions, and a high-level model (typically, a logistic
regression model) is used to combine their predictions. By
combining with PLR, we show how differential privacy can
be ensured in stacking. Besides, when the importance of
features is known a priori, they can be easily incorporated
in feature-based partitioning. We further analyze the learning
guarantee of sample-based and feature-based stacking, and
show theoretically that feature-based partitioning can have
lower sample complexity (than sample-based partitioning),
and thus better performance. By adapting the feature impor-
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tance, its learning performance can be further boosted.
To demonstrate the superiority of the proposed method, we

perform experiments on two benchmark data sets (MNIST
and NEWS20). Empirical results confirm that feature-based
stacking performs better than sample-based stacking. It is
also better than directly using PLR on the training data set.
Besides, the prediction performance is further boosted when
feature importance is used. Finally, we apply the proposed
approach for cross-organizational diabetes prediction in the
transfer learning setting. The experiment is performed on the
RUIJIN data set, which contains over ten thousands diabetes
records from across China. Results show significantly im-
proved diabetes prediction performance over the state-of-the-
art, while still protecting data privacy.
Notation. In the sequel, vectors are denoted by lowercase
boldface, and (·)> denotes transpose of a vector/matrix;
σ(a) = exp(a)/(1+exp(a)) is the sigmoid function. A function
g is µ-strongly convex if g(αw+ (1−α)u) ≤ αg(w) + (1−
α)g(u)− µ

2α(1− α)‖w − u‖2 for any α ∈ (0, 1).

2 Related Works
2.1 Differential Privacy
Differential privacy [Dwork et al., 2006; Dwork and Roth,
2014] has been established as a rigorous standard to guarantee
privacy for algorithms that access private data. Intuitive-
ly, given a privacy budget ε, an algorithm preserves ε-
differentially privacy if changing one entry in the data set
does not change the likelihood of any of the algorithm’s
output by more than ε. Formally, it is defined as follows.

Definition 1 ([Dwork et al., 2006]). A randomized mechanis-
m M is ε-differentially private if for all output t of M and for
all input data D1,D2 differing by one element, Pr(M(D1) =
t) ≤ eε Pr(M(D2) = t).

To meet the ε-differentially privacy guarantee, careful
perturbation or noise usually needs to be added to the learning
algorithm. A smaller ε provides stricter privacy guarantee but
at the expense of heavier noise, leading to larger performance
deterioration [Chaudhuri et al., 2011; Bassily et al., 2014].
A relaxed version of ε-differentially private, called (ε, δ)-
differentially privacy in which δ measures the loss in privacy,
is proposed [Dwork and Roth, 2014]. However, we focus on
the more stringent Definition 1 in this paper.

2.2 Privacy-preserving Logistic Regression (PLR)
Logistic regression has been popularly used in machine
learning [Friedman et al., 2012]. Various differential priva-
cy approaches have been developed for logistic regression.
Examples include output perturbation [Dwork et al., 2006;
Chaudhuri et al., 2011], gradient perturbation [Abadi et al.,
2016] and objective perturbation [Chaudhuri et al., 2011;
Bassily et al., 2014]. In particular, objective perturbation,
which adds designed and random noise to the learning objec-
tive, has both privacy and learning guarantees as well as good
empirical performance.

Privacy-preserving logistic regression (PLR) [Chaudhuri et
al., 2011] is the state-of-the-art model based on objective
perturbation. Given a data set D = {xi, yi}ni=1, where

xi ∈ Rd is the sample and yi the corresponding class label,
we first consider the regularized risk minimization problem:

min
w

1/n
∑n

i=1
`(w>xi, yi) + λg(w), (1)

where w is a vector of the model parameter, `(ŷ, y) = log(1+
e−yŷ) is the logistic loss (with predicted label ŷ and given
label y), g is the regularizer and λ ≥ 0 is a hyperparameter.
To guarantee privacy, Chaudhuri et al. (2011) added two extra
terms to (1), leading to:

min
w

1/n
n∑
i=1

`(w>xi, yi)+b>w/n+∆‖w‖2/2 + λg(w), (2)

where b is random noise drawn from h(b) ∝ exp(ε
′
/2‖b‖)

with E(‖b‖) = 2d/ε′, ε′ is a privacy budget modified from
ε, and ∆ is a scalar depending on λ, n, ε. The whole PLR
procedure is shown in Algorithm 1.

Algorithm 1 PLR: Privacy-preserving logistic regression.
Require: privacy budget ε, data set D;
1: ε′ = ε− log(1 + 1/2nλ + 1/16n2λ2);
2: if ε′ > 0 then
3: ∆ = 0;
4: else
5: ∆ = (4n(exp(ε/4)− 1))−1 − λ and ε′ = ε/2;
6: end if
7: scale ‖x‖ ≤ 1 for all x ∈ D;
8: pick a random vector b from h(b) ∝ exp (ε

′‖b‖/2);
9: obtain w by solving (2);

10: return w.

Proposition 1 ([Chaudhuri et al., 2011]). If the regularizer
g is strongly convex, Algorithm 1 provides ε-differential
privacy.

While privacy guarantee is desirable, the resultant privacy-
preserving machine learning model may not have good learn-
ing performance. In practice, the performance typically
degrades dramatically because of the introduction of noise
[Chaudhuri et al., 2011; Rajkumar and Agarwal, 2012;
Bassily et al., 2014; Shokri and Shmatikov, 2015]. Assume
that samples from D are drawn i.i.d. from an underlying
distribution P . Let L(w;P ) = E(x,y)∼P [`(w>x, y)] be the
expected loss of the model. The following Proposition shows
the number of samples needed for PLR to have comparable
performance as a given baseline model.
Proposition 2 ([Chaudhuri et al., 2011]). Let g(·) = 1/2‖·‖2,
and v be a reference model parameter. Given δ > 0 and
εg > 0, there exists a constant C1 such that when

n > C1 max
(
‖v‖2 log( 1

δ )/ε2g, d log( dδ )‖v‖/εgε, ‖v‖
2
/εgε
)
, (3)

w from Algorithm 1 meets Pr[L(w,P )≤L(v,P )+εg]≥1−δ.

2.3 Multi-Party Data Learning
Ensemble learning has been considered with differential
privacy under multi-party data learning (MPL). The task is
to combine predictors from multiple parties with privacy
[Pathak et al., 2010]. Pathak et al. [2010] first proposed
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a specially designed protocol to privately combine multiple
predictions. The performance is later surpassed by [Hamm
et al., 2016; Papernot et al., 2017], which uses another
classifier built on auxiliary unlabeled data. However, all
these combination methods rely on extra, privacy-insensitive
public data, which may not be always available. Moreover,
the aggregated prediction may not be better than the best
single party’s prediction. There are also MPL methods that
do not use ensemble learning. Rajkumar and Agarwal [2012]
used stochastic gradient descent, and Xie et al. [2017]
proposed a multi-task learning method. While these improve
the performance of the previous ones based on aggregation,
they gradually lose the privacy guarantee after more and more
iterations.

3 Privacy-preserving Ensemble
In this section, we propose to improve the learning guarantee
of PLR by ensemble learning [Zhou, 2012]. Popular exam-
ples include bagging [Breiman, 1996a], boosting [Friedman
et al., 2000], and stacking [Wolpert, 1992]. Bagging and
boosting are based on partitioning of training samples, and
use pre-defined rules (majority or weighted voting) to com-
bine predictions from models trained on different partitions.
Bagging improves learning performance by reducing the
variance. However, logistic regression is a convex model
and relatively stable. Boosting, on the other hand, is useful
in combining weak models to a strong one, while logistic
regression is a relatively strong classifier and often has good
performance in many applications.

3.1 Privacy-preserving Stacking with Sample
Partitioning (SP)

We first consider using stacking with SP, and PLR is used as
both the low-level and high-level models (Algorithm 2). As
stacking does not impose restriction on the usage of classifiers
on each partition of the training data, a simple combination of
stacking and PLR can be used to provide privacy guarantee.

Algorithm 2 PST-S: Privacy-preserving stacking with SP.
Require: privacy budget ε, data set D;
1: partitionD into disjoint setsDl andDh, for training of the low-

level and high-level models, respectively;
2: partition samples in Dl to K disjoint sets {S1, . . . , SK};
3: for k = 1, . . . ,K do
4: train PLR (Algorithm 1) with privacy budget ε on Sk, and

obtain the low-level model parameter wl
k;

5: end for
6: construct meta-data setMs = {[σ(x>wl

1);. . . ;σ(x>wl
K)], y}

using all samples {x, y} ∈ Dh;
7: train PLR (Algorithm 1) with privacy budget ε on Ms, and

obtain the high-level model parameter wh;
8: return {wl

k} and wh.

Proposition 3. If the regularizer g is strongly convex, Algo-
rithm 2 provides ε-differential privacy.

However, while the high-level model can be better than
any of the single low-level models [Džeroski and Ženko,
2004], Algorithm 2 may not perform better than directly

using PLR on the whole D for the following two reasons.
First, each low-level model uses only Sk (step 4), which is
about 1/K the size of D (assuming that the data set D is
partitioned uniformly). This smaller sample size may not
satisfy condition (3) in Proposition 2. Second, in many real-
world applications, features are not of equal importance. For
example, for diabetes prediction using the RUIJIN data set
(Table 3), Glu120 and Glu0, which directly measure glucose
levels in the blood, are more relevant than features such as
age and number of children. However, during training of the
low-level models, Algorithm 2 adds equal amounts of noise
to all features. If we can add less noise to the more important
features while keeping the same privacy guarantee, we are
likely to get better learning performance.

3.2 Privacy-preserving Stacking with Feature
Partitioning (FP)

To address the above problems, we propose to partition the
data based on features instead of samples in training the low-
level models. The proposed feature-based stacking approach
is shown in Algorithm 3. Features are partitioned into K
subsets, and Dl is split correspondingly into K disjoint
sets {F1, . . . ,FK}. Obviously, as the number of training
samples is not reduced, the sample size condition for learning
performance guarantee is easier to be satisfied (details will be
established in Theorem 4).

Algorithm 3 PST-F: Privacy-preserving stacking with FP.

Require: privacy budget ε, data setD, feature importance {qk}Kk=1

where qk ≥ 0 and
∑K
k=1 qk = 1; 2

1: partitionD into disjoint setsDl andDh, for training of the low-
level model and high-level model, respectively;

2: partitionDl toK disjoint sets {F1, . . . ,FK} based on features;
3: ε′ = ε−

∑K
k=1 log(1 + q2k/2nλk + q4k/16n2λ2

k);
4: for k = 1, . . . ,K do
5: scale ‖x‖ ≤ qk for all x ∈ Fk;
6: if ε′ > 0 then
7: ∆k = 0 and εk = ε′;
8: else
9: ∆k = q2k/4n(exp(εqk/4)−1)− λk and εk = ε/2;

10: end if
11: pick a random bk from h(b) ∝ exp(εk‖b‖/2);
12: wl

k = arg minw
1/n
∑

xi∈Fk
`(w>xi, yi) + b>

k w/n +
∆‖w‖2/2 + λkgk(w);

13: end for
14: construct meta-data setMf = {[σ(x>(1)w

l
1),. . . ,σ(x>(K)w

l
K)],

y} using all {x, y} ∈ Dh, where x(k) is a vector made from x
by taking features covered by Fk;

15: train PLR (Algorithm 1) with privacy budget ε on Mf , and
obtain the high-level model parameter wh;

16: return {wl
k} and wh.

When the relative importance of feature subsets is known,
Algorithm 3 adds less noise to the more important features.
Specifically, let the importance3 of Fk (with dk features) be
qk, where qk ≥ 0 and

∑
k=1 qk = 1, and is independent with

D. Assume that ε′ > 0 in step 6 (and thus εk = ε′). Recall

3When feature importance is not known, q1 = · · · = qK = 1/K.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4116



from Section 2.2 that E(‖bk‖) = 2dk/εk = 2dk/ε′. By scaling
the samples in each Fk as in step 5, the injected noise level in
Fk is given by E(‖bk‖)/‖x‖ = 2dk/ε′qk. This is thus inversely
proportional to the importance qk.
Remark 1. In the special case where only one feature group
has nonzero importance, Algorithm 3 reduces Algorithm 1 on
that group, and privacy is still guaranteed.

Finally, a privacy-preserving low-level logistic regression
model is obtained in step 12, and a privacy-preserving high-
level logistic regression model is obtained in step 15. Theo-
rem 4 guarantees privacy of Algorithm 3. Note that the proofs
in [Chaudhuri et al., 2011; Bassily et al., 2014] cannot be
directly used, as they consider neither stacking nor feature
importance.
Theorem 4. If all gk’s are strongly convex, Algorithm 3
provides ε-differential privacy.

Analogous to Proposition 1, the following bounds the
learning performance of each low-level model.
Theorem 5. gk = 1/2‖ · −uk‖2, where uk is any constant
vector, and vk is a reference model parameter. Let ak =
qk‖vk‖. given δ > 0 and εg > 0, there exists a constant C1

such that when

n>C1 max
(
a2k log(1/δ)/ε2g, d log(d/Kδ)ak/qkKεgε, a

2
k/εgε

)
, (4)

wl
k from Algorithm 3 satisfies Pr[L(wl

k, P ) ≤ L(vk, P ) +
εg] ≥ 1− δ.

Remark 2. When K = 1 (a single low-level model trained
with all features) and uk = 0, Theorem 5 reduces to
Proposition 2.

Note that, to keep the same bound L(vk, P ) + εg , since
xs’ are scaled by qk, vk should be scaled by 1/qk, so E(ak) =
E(qk‖vk‖) remains the same as qk changes. Thus, Theorem 5
shows that low-level models on more important features can
indeed learn better, if these features are assigned with larger
qk. Since stacking can have better performance than any
single model [Ting and Witten, 1999; Džeroski and Ženko,
2004] and Theorem 5 can offer better learning guarantee than
Proposition 2, Algorithm 3 can have better performance than
Algorithm 1. Finally, compared with Proposition 1, gk in
theorem 5 is more flexible in allowing an extra uk. We will
show in Section 3.3 that this is useful for transfer learning.

Since the learning performance of stacking itself is still an
open issue [Ting and Witten, 1999], we leave the guarantee
for the whole Algorithm 3 as future work. A potential
problem with FP is that possible correlations among feature
subsets can no longer be utilized. However, as the high-
level model can combine information from various low-level
models, empirical results in Section 4.1 show that this is not
problematic unless K is very large.

3.3 Application to Transfer Learning
Transfer learning [Pan and Yang, 2010] is a powerful and
promising method to extract useful knowledge from a source
domain to a target domain. A popular transfer learning ap-
proach is hypothesis transfer learning (HTL) [Kuzborskij and
Orabona, 2013], which encourages the hypothesis learned in

the target domain to be similar with that in the source domain.
For application to (1), HTL adds an extra regularizer as:

min
w

∑
xi∈Dtgt

`(w>xi, yi)+λg(w)+η/2‖w−wsrc‖2. (5)

Here, η is a hyperparameter, Dtgt is the target domain data,
and wsrc is obtained from the source domain. Algorithm 4
shows how PST-F can be extended with HTL using privacy
budgets εsrc and εtgt for the source and target domains,
respectively. The same feature partitioning is used on both
the source and target data. PLR is trained on each source
domain data subset to obtain (wsrc)k (steps 2-4). This is then
transferred to the target domain using PST-F with gk(w) =
1
2‖w−(wsrc)k‖2 (step 5).

Algorithm 4 PST-H: Privacy-preserving stacking with HTL.
Require: source data setsDsrc, target data setDtgt, and correspond-

ing privacy budgets εsrc and εtgt, respectively.
(source domain processing)

1: partition Dsrc to K disjoint sets {F1, . . . ,FK} based on fea-
tures;

2: for k = 1, . . . ,K do
3: train PLR with privacy budget εsrc on Fk and obtain (wsrc)k;
4: end for

(target domain processing)
5: obtain

{
(wtgt)

l
k

}
and wh

tgt from PST-F (Algorithm 3) by taking
gk(w)=1/2‖w−(wsrc)k‖2 and privacy budget εtgt on Dtgt;

6: return {(wsrc)k} for source domain,
{

(wtgt)
l
k

}
and wh

tgt for
target domain.

The following provides privacy guarantees on both the
source and target domains. Recently, privacy-preserving HTL
is also proposed in [Wang et al., 2018]. However, it does not
consider stacking and ignores feature importance.

Corollary 6. Algorithm 4 provides εsrc- and εtgt-differential
privacy guarantees for the source and target domains.

4 Experiments
4.1 Benchmark Datasets
Experiments are performed on two popular benchmark data
sets for evaluating privacy-preserving learning algorithms
[Shokri and Shmatikov, 2015; Papernot et al., 2017; Wang
et al., 2018]: MNIST [LeCun et al., 1998] and NEWS20
[Lang, 1995] (Table 1). The MNIST data set contains
images of handwritten digits. Here, we use the digits 0
and 8. We randomly select 5000 samples. 60% of them
are used for training (with 1/3 of this used for validation),
and the remaining 20% for testing. The NEWS20 data
set is a collection of newsgroup documents. Documents
belonging to the topic “sci” are taken as positive samples,
while those in the topic “talk” are taken as negative. Finally,
we use PCA to reduce the feature dimensionality to 100, as
original dimensionality for MINIST/NEWS20 is too high for
differentially private algorithms to handle as the noise will
be extremely large. Note that we use PCA for simplicity of
the ablation study. However, note that the importance scores
should be obtained from side information independent from

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4117



MNIST NEWS20
#train #test #features #train #test #features
3000 2000 100 4321 643 100

Table 1: Summary of the MNIST and NEWS20 data sets.

(a) MNIST. (b) NEWS20.

Figure 1: Testing AUC vs ε. Here, “∞” corresponds to the non-
privacy-preserving version of the corresponding algorithms.

the data or from experts’ opinions (as in diabetes example).
Otherwise, ε-differential privacy will not be guaranteed.

The following algorithms are compared: (i) PLR, which
applies Algorithm 1 on the training data; (ii) PST-S: Algorith-
m 2, based on SP; and (iii) PST-F: Algorithm 3, based on FP.
We use K = 5 and 50% of the data for Dl and the remaining
for Dh. Two PST-F variants are compared: PST-F(U), with
random FP and equal feature importance. And PST-F(W),
with partitioning based on the PCA feature scores; and the
importance of the kth group Fk is

qk =
∑
i:fi∈Fk

vi/
∑
j:fj∈Dl vj, (6)

where vi is the variance of the ith feature fi. Gradient
perturbation is worse than objective perturbation in logistic
regression [Bassily et al., 2014], thus is not compared.

The area-under-the-ROC-curve (AUC) [Hanley and Mc-
Neil, 1983] on the testing set is used for performance eval-
uation. Hyper-parameters are tuned using the validation set.
To reduce statistical variations, the experiment is repeated 10
times, and the results averaged.

Varying Privacy Budget ε
Figure 1 shows the testing AUC’s when the privacy budget ε
is varied. As can be seen, the AUCs for all methods improve
when the privacy requirement is relaxed (ε is large and less
noise is added). Moreover, PST-S can be inferior to PLR,
due to insufficient training samples caused by SP. Both PST-
F(W) and PST-F(U) have better AUCs than PST-S and PLR.
In particular, PST-F(W) is the best as it can utilize feature
importance. Since PST-S is inferior to PST-F(U), we only
consider PST-F(U) in the following experiments.

Varying Number of Partitions K
In this experiment, we fix ε = 1, and vary K. As can be
seen from Figure 2(a)-(b), when K is very small, ensemble
learning is not effective. When K is too large, a lot of
feature correlation information is lost and the testing AUC
also decreases.

(a) MNIST. (b) NEWS20.

Figure 2: Testing AUC with different K (first row) and different
feature importance settings (second row).

Changing the Feature Importance
In the above experiments, feature importance is defined based
on the variance from PCA. Here, we show how feature
importance influences prediction performance. In real-world
applications, we may not know the exact importance of
features. Thus, we replace variance vi by the ith power of α
(αi), where α is a positive constant, and use (6) for assigning
weights. Note that when α < 1, more importance features
have larger weights; and vice versa when α > 1. Note that
PST-F(W) does not reduce to PST-F(U) when α = 1, as more
important features are still grouped together. Figure 2(c)-(d)
show the testing AUCs at different α’s. As can be seen, with
proper assigned weights (i.e., α < 1 and more important
features have larger qk’s), the testing AUC can get higher.
If less important features are more valued, the testing AUC
decreases and may not be better than PST-F(U), which uses
uniform weights. Moreover, we see that PST-F(W) is not
sensitive to the weights once they are properly assigned.

Choice of High-Level Model
We compare different high-level models in combining predic-
tions from the low-level models. The following methods are
compared: (i) major voting (C-mv) from low-level models;
(ii) weighted major voting (C-wmv), which uses {qk} as the
weights; and (iii) by a high-level model in PST-F (denoted
“C-hl”). Figure 3 shows results on NEWS20 with ε = 1.0.
As can be seen, C-0 in Figure 3(b) has the best performance
among all single low-level models, as it contains the most
important features. Besides, stacking (i.e., C-hl), is the best
way to combine predictions from C-{0-4}, which also offers
better performance than any single low-level models.

4.2 Diabetes Prediction
Diabetes is a group of metabolic disorders with high blood
sugar levels over a prolonged period. The RUIJIN diabetes
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branch# 1 2 3 4 5 6 7 8
PST-H(W) 0.747±0.032 0.736±0.032 0.740±0.040 0.714±0.040 0.766±0.039 0.707±0.017 0.721±0.0464 0.753±0.042
PST-H(U) 0.678±0.049 0.724±0.037 0.652±0.103 0.708±0.033 0.653±0.070 0.663±0.036 0.682±0.0336 0.692±0.044
PPHTL 0.602±0.085 0.608±0.078 0.528±0.062 0.563±0.067 0.577±0.075 0.601±0.031 0.580±0.0708 0.583±0.056
PLR(target) 0.548±0.088 0.620±0.055 0.636±0.046 0.579±0.075 0.533±0.058 0.613±0.035 0.561±0.0764 0.584±0.045
branch# 9 10 11 12 13 14 15 16
PST-H(W) 0.701±0.023 0.698±0.036 0.736±0.046 0.738±0.045 0.746±0.0520 0.661±0.094 0.697±0.023 0.604±0.012
PST-H(U) 0.635±0.026 0.644±0.050 0.635±0.054 0.645±0.061 0.718±0.0647 0.644±0.044 0.647±0.061 0.567±0.036
PPHTL 0.547±0.066 0.517±0.075 0.565±0.059 0.547±0.089 0.592±0.0806 0.615±0.071 0.558±0.065 0.524±0.027
PLR(target) 0.515±0.065 0.555±0.061 0.553±0.066 0.520±0.088 0.619±0.0701 0.563±0.026 0.558±0.060 0.517±0.053

Table 2: Testing AUC on all branches of RUIJIN data set. The best and comparable results according to pair-wise 95% significance test are
high-lighted. Testing AUC of PLR on main center is 0.668±0.026.

(a) PST-F(U). (b) PST-F(W).

Figure 3: Testing AUC of low-levels models and different com-
bining methods on NEWS20 (ε = 1.0), where C-0 to C-4 are
performance of low-level models.

name importance explaination
mchild 0.010 number of children
weight 0.012 birth weight
bone 0.013 bone mass measurement
eggw 0.005 frequency of having eggs
Glu120 0.055 glucose level 2 hours after meals
Glu0 0.060 glucose level immediately after meals
age 0.018 age
bmi 0.043 body mass index
HDL 0.045 high-density lipoprotein

Table 3: Some features in the RUIJIN data set, and importance is
suggested by doctors. Top (resp. bottom) part: Features collected
from the first (resp. second) investigation.

data set is collected by the Shanghai Ruijin Hospital during
two investigations (in 2010 and 2013), conducted by the main
hospital in Shanghai and 16 branches across China. The first
investigation consists of questionnaires and laboratory tests
collecting demographics, life-styles, disease information, and
physical examination results. The second investigation in-
cludes diabetes diagnosis. Some collected features are shown
in Table 3. Table 4 shows a total of 105,763 participants
who appear in both two investigations. The smaller branches
may not have sufficient labeled medical records for good
prediction. Hence, it will be useful to borrow knowledge
learned by the main hospital. However, users’ privacy is a
major concern, and patients’ personal medical records in the
main hospital should not be leaked to the branches.

In this section, we apply the method in Section 3.3 for
diabetes prediction. Specifically, based on the patient data
collected during the first investigation in 2010, we predict
whether he/she will have diabetes diagnosed in 2013. The

main #1 #2 #3 #4 #5 #6 #7 #8
12,702 4,334 4,739 6,121 2,327 5,619 6,360 4,966 5,793

#9 #10 #11 #12 #13 #14 #15 #16
6,215 3,659 5,579 2,316 4,285 6,017 6,482 4,493

Table 4: Number of samples collected from the main hospital and
16 branches in the RUIJIN data set.

main hospital serves as the source domain, and the branches
are the target domains. We set εsrc = εtgt = 1.0. The
following methods are also compared: (i) PLR(target), which
directly uses PLR on the target data; (ii) PPHTL [Wang et al.,
2018]: a recently proposed privacy-preserving HTL method
based on PLR; (iii) PST-F(U): There are 50 features, and they
are randomly split into five groups, i.e., K = 5, and each
group have equal weights; (iv) PST-F(W): Features are first
sorted by importance, and then grouped as follows: The top
10 features are placed in the first group, the next 10 features
go to the second group, and so on. qk is set based on (6), with
vi being the importance values provided by the doctors. The
other settings are the same as in Section 4.1.

Results are shown in Table 2. PPHTL may not have better
performance than PLR(target), which is perhaps due to noise
introduced in features. However, PST-F(U) improves over
PPHTL by feature splitting, and consistently outperforms
PLR(target). PST-F(W), which considers features impor-
tance, is the best.

5 Conclusion
In this paper, we propose a new privacy-preserving ma-
chine learning method, which improves privacy-preserving
logistic regression by stacking. This can be done by either
sample-based or feature-based partitioning of the data set.
We provide theoretical justifications that the feature-based
approach is better and requires a smaller sample complexity.
Besides, when the importance of features is available, this
can further boost the feature-based approach both in theory
and practice. Effectiveness of the proposed method is verified
on both standard benchmark data sets and a real-world cross-
organizational diabetes prediction application.
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