
SIGUA: Forgetting May Make Learning with Noisy Labels More Robust

Bo Han 1 2 Gang Niu 2 Xingrui Yu 3 Quanming Yao 4 Miao Xu 2 5 Ivor W. Tsang 3 Masashi Sugiyama 2 6

Abstract
Given data with noisy labels, over-parameterized
deep networks can gradually memorize the data,
and fit everything in the end. Although equipped
with corrections for noisy labels, many learning
methods in this area still suffer overfitting due to
undesired memorization. In this paper, to relieve
this issue, we propose stochastic integrated gra-
dient underweighted ascent (SIGUA): in a mini-
batch, we adopt gradient descent on good data as
usual, and learning-rate-reduced gradient ascent
on bad data; the proposal is a versatile approach
where data goodness or badness is w.r.t. desired
or undesired memorization given a base learning
method. Technically, SIGUA pulls optimization
back for generalization when their goals conflict
with each other; philosophically, SIGUA shows
forgetting undesired memorization can reinforce
desired memorization. Experiments demonstrate
that SIGUA successfully robustifies two typical
base learning methods, so that their performance
is often significantly improved.

1. Introduction
Data labeling may be heavily noisy in practice where label
generation/corruption processes are usually agnostic (Xiao
et al., 2015; Jiang et al., 2018; Wang et al., 2019; Welinder
et al., 2010). As a result, learning with noisy labels seems
inevitable. On the other hand, more complex data requires
more expressive power, and then using over-parameterized
deep networks as our models seems also inevitable (Good-
fellow et al., 2016). This combination of noisy labels and
deep networks is very pessimistic, since deep networks are
able to fit anything given for training even if the labels are
completely random (Zhang et al., 2017). Unfortunately, it
is non-trivial to apply general-purpose regularization such

1Hong Kong Baptist University 2RIKEN 3AAII, University of
Technology Sydney 44Paradigm Inc. (Hong Kong) 5University of
Queensland 6The University of Tokyo. Correspondence to: Bo
Han <bhanml@comp.hkbu.edu.hk>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

as weight decay (Krogh & Hertz, 1991) and dropout (Sri-
vastava et al., 2014) for controlling model complexities of
deep networks. General-purpose regularization would hurt
the capability of memorizing not only noisy labels but also
complex data, which is never our desideratum.

Fortunately, even though deep networks can fit everything
in the end, they learn patterns first (Arpit et al., 2017): this
suggests deep networks can gradually memorize the data,
moving from regular data to irregular data such as outliers
and mislabeled data. As a consequence, the memorization
events during training may be divided into two categories:
desired memorization that helps generalization, and unde-
sired memorization that hurts generalization. Our desider-
atum is to keep the former and avoid the latter, which may
save generalization until the end of training hopefully.

However, it is hard to avoid undesired memorization from
the beginning of training, since two categories can be rela-
tive to each other and cannot be distinguished without suf-
ficient training. Consider sample selection, a correction for
noisy labels where small-loss data are regarded as correct,
and deep networks are trained only on selected data (Jiang
et al., 2018; Han et al., 2018b; Yu et al., 2019). The losses
could be enough informative after enough epochs, but then
many mislabeled data have already been memorized many
times. Consider backward correction, where the surrogate
loss is corrected according to the label corruption process,
and deep networks are trained based on this corrected loss
(Natarajan et al., 2013; Patrini et al., 2017). The corrected
loss is not necessarily a non-negative loss, and it might go
fairly negative on a training data, which signifies this data
being memorized too much. Thus, these learning methods
equipped with corrections for noisy labels still suffer from
undesired memorization which in turn leads to overfitting.

To relieve this issue of overfitting due to undesired memo-
rization, we propose stochastic integrated gradient under-
weighted ascent (SIGUA). Specifically, SIGUA belongs to
stochastic optimization and can be integrated into stochas-
tic gradient descent (SGD) or its variants (e.g., Robbins &
Monro, 1951; Kingma & Ba, 2015). SIGUA works in each
mini-batch: it implements SGD on good data as usual, and
if there are any bad data, it implements stochastic gradient
ascent (SGA) on bad data with a reduced learning rate. It
is a versatile approach, where data goodness or badness is

SIGUA: Forgetting May Make Learning with Noisy Labels More Robust

w.r.t. desired or undesired memorization arose in the base
learning method. For instance, the good-data condition for
sample selection is that the loss of the deep network being
trained on a data is relatively small within the mini-batch;
that for backward correction is the corrected loss on a data
is still positive. We can see that a good-data condition can
select desired memorization, and then a bad-data condition
should be designed accordingly, so that it can select unde-
sired memorization to be relieved by SGA.

SIGUA can be justified as follows. In machine learning, it
is known that optimization shares the goal with generaliza-
tion in the beginning of training, and we suffer underfitting
if optimization is not well done. However, when optimiza-
tion is well done, its goal will diverge from the goal of gen-
eralization, and we suffer overfitting if optimization is too
much done. That is why we add regularizations (Goodfel-
low et al., 2016), including but not limited to the powerful
early stopping (Morgan & Bourlard, 1990). Nevertheless,
early stopping might not be a good choice, due to the pos-
sibility of epoch-wise double descent phenomena occurred
in training deep networks (Nakkiran et al., 2020). Hence,
we should trade off optimization for generalization without
early stopping. Technically, SIGUA is a specially designed
regularization by pulling optimization back for generaliza-
tion when their goals conflict with each other. A key differ-
ence between SIGUA and parameter shrinkage like weight
decay is that SIGUA pulls optimization back on some data
but parameter shrinkage does the same on all data.

Furthermore, it is of vital importance to distinguish desired
and undesired memorization in the presence of label noise.
Although deep networks are excellent function approxima-
tors, they are only good at continuous functions or at least
functions without jump discontinuity. However, memoriz-
ing mislabeled data asks the deep network being trained to
exhibit a certain jump discontinuity, and thus a mislabeled
data consumes notably more model capacity than a regular
data. In terms of deep learning theory, deep networks have
high adaptivity to spatial inhomogeneity of target function
smoothness, but a mislabeled data consumes notably more
such adaptivity (Suzuki, 2019). Therefore, if the deep net-
work being trained can forget a mislabeled data, an essen-
tial amount of model capacity can be returned, which may
be properly consumed later. In this sense, philosophically,
SIGUA demonstrates that forgetting undesired memoriza-
tion can reinforce desired memorization, which provides a
novel viewpoint on the inductive bias of neural networks.

2. A Prototype of SIGUA
Let X and Y be the input and output domains. Consider a
k-class classification problem, Y = {1, . . . , k}. Let (x, y)
be the random variable pair of interest, and p(x, y) be the
underlying joint density from which test data will be sam-

pled. In learning with noisy labels, the training data are all
sampled from a corrupted joint density p(x, ỹ) rather than
p(x, y), where ỹ denotes the random variable of the noisy
label, p(x) remains the same and p(y | x) is corrupted into
p(ỹ | x) (cf. Natarajan et al., 2013; Patrini et al., 2017):

S = {(xi, ỹi)}ni=1
i.i.d.∼ p(x, ỹ) = p(ỹ | x)p(x),

where n denotes the sample size or the number of training
data. We do not use bold x because X does not necessarily
belong to a vector space and x is not necessarily a vector.

Let f : X → Rk be the classifier to be trained, specifically,
the score function. Let ` : Rk × Y → R+ be the surrogate
loss function for k-class classification, e.g., softmax cross-
entropy loss. The classification risk of f is defined as

R(f) = Ep(x,y)[`(f(x), y)], (1)

where Ep(x,y) denotes the expectation over p(x, y). If it is
supervised learning where S is drawn from p(x, y), we can
approximate Eq. (1) by

R̂(f) = 1
n

∑n
i=1 `(f(xi), yi), (2)

which is the empirical risk and the objective of supervised
classification before adding regularizations (Vapnik, 1998;
Goodfellow et al., 2016). The empirical risk in Eq. (2) is
an unbiased estimator of the risk in Eq. (1), and hence the
minimizer of R̂(f) converges to the minimizer of R(f) as
n goes to infinity (Vapnik, 1998).

However, in learning with noisy labels, we cannot replace
the risk with the empirical risk as S is actually drawn from
p(x, ỹ). We need some correction for noisy labels in order
to approximately minimize the risk R(f). Besides certain
general-purpose regularizations that might work here such
as virtual adversarial training (Miyato et al., 2019), there
are three mainstreams—sample selection (e.g., Han et al.,
2018b), label correction (e.g., Ma et al., 2018), as well as
loss correction (e.g., Patrini et al., 2017):
• the first approach tries to select data with correct labels,

while the second approach tries to recover correct labels
for all data, so that both of them push the distribution of
selected/corrected data towards p(x, y);

• other than data manipulation, the third approach manip-
ulates the loss, so that minimizing the expectation of the
original loss over p(x, y) can be rewritten into minimiz-
ing the expectation of the corrected loss over p(x, ỹ).

For now, let us omit the technical details, and assume that
we have a base learning method that is implemented as an
algorithm with a forward pass and a backward pass given
a mini-batch. The forward pass returns loss values for data
in this mini-batch by feeding the data through f , and then
the backward pass returns the gradient of the average loss
by propagating the average loss through f . With this algo-
rithmic abstraction, we can present SIGUA at a high level.

SIGUA: Forgetting May Make Learning with Noisy Labels More Robust

Algorithm 1 SIGUA-prototype (in a mini-batch).
Require: base learning algorithm B, optimizer O,

mini-batch Sb = {(xi, ỹi)}nb
i=1 of batch size nb,

current model fθ where θ holds the parameters of f ,
good- and bad-data conditions Cgood and Cbad for B,
underweight parameter γ such that 0 ≤ γ ≤ 1

1: {`i}nb
i=1 ← B.forward(fθ, Sb) # forward pass

2: `b ← 0 # initialize loss accumulator
3: for i = 1, . . . , nb do
4: if Cgood(xi, ỹi) then
5: `b ← `b + `i # accumulate loss positively
6: else if Cbad(xi, ỹi) then
7: `b ← `b − γ`i # accumulate loss negatively
8: end if # ignore any uncertain data
9: end for

10: `b ← `b/nb # average accumulated loss
11: ∇θ ← B.backward(fθ, `b) # backward pass
12: O.step(∇θ) # update model

Algorithm design. A prototype of stochastic integrated
gradient underweighted ascent (SIGUA) is given in Algo-
rithm 1. Since it is only a prototype, it serves as a versatile
approach where the meanings of different steps depend on
the base learning algorithm B (i.e., Lines 1, 4, 6 and 11).

More specifically, Cgood,Cbad : X × Y → {0, 1} are func-
tions mapping (xi, ỹi) to either true or false:
• if it is a good data, Cgood/Cbad returns true/false;
• if it is a bad data, Cgood/Cbad returns false/true;
• otherwise, Cgood and Cbad both return false.
The last option is of conceptual importance, which allows
Cgood and Cbad not to cover all data, but to leave some data
that we are uncertain about to be regarded as neither good
nor bad. We have assumed Cgood and Cbad are functions of
x and ỹ for simplicity; they may also require other data in
Sb or other information about B and O in reality.

Algorithm 1 runs as follows. Given the mini-batch Sb, the
forward pass of B is called in Line 1. Then the loss values
are manipulated in Lines 2–10 where they are reduced to a
scalar ready for backpropagation. Before the for loop, the
loss accumulator `b is initialized in Line 2. Subsequently,
• in Line 5, `i is added to `b if (xi, ỹi) meets Cgood, which

will result in gradient descent by O in Line 12;
• in Line 7, `i is underweighted by γ and subtracted from
`b if (xi, ỹi) meets Cbad, which will lead to gradient un-
derweighted ascent by O in Line 12;

• otherwise, no branch is executed, so that `i is ignored in
`b, which will cause stop gradient by O in Line 12.

After the for loop, the accumulated loss `b is divide by the
batch size nb in Line 10 to make the average loss. Finally,
the backward pass of B is called in Line 11, and the opti-
mizer O comes to update the current model fθ in Line 12.

In order to integrate gradient ascent within an optimizer O
carrying out gradient descent, a loss accumulator suffices,
and it is more efficient than a gradient accumulator. There
is no difference between negating losses and negating gra-
dients, while γ has the same effects in reducing losses and
reducing the learning rate inside O. If using deep learning
framework based on dynamic computational graph (Tokui
et al., 2015) such as PyTorch and TensorFlow eager execu-
tion, we can modify losses in-place instead of accumulate
them. In practice, we can also get rid of the for loop using
a computationally more efficient implementation of Algo-
rithm 1. Suppose the forward pass of B returns `b ∈ Rnb ,
i.e., a vector but not a set of loss values, and Cgood and Cbad
directly map Sb to {0, 1}nb , i.e., two vectors of good- and
bad-data masks. Then, Lines 2–10 may be replaced with a
single line:

`b ←
(
`b
>(Cgood(Sb)− γCbad(Sb))

)
/nb, (3)

where>denotes the transpose, and Cgood(Sb)− γCbad(Sb)
is a vector whose entries take 1 for good data, 0 for uncer-
tain data, and −γ for bad data. Eq. (3) includes everything
about SIGUA, and thus we will refer to either Algorithm 1
or Eq. (3) as SIGUA, interchangeably.

Last but not least, notice that SIGUA is extremely general.
SIGUA becomes standard training, if Cgood always returns
true. It becomes training on good data only, if Cbad always
returns false; we name it StopGrad because SIGUA is also
named after how we handle non-good data. Moreover, the
hyperparameter γ controls the strength of gradient ascent:
when γ = 0, it becomes StopGrad again; when γ = 1, the
bad data would be erased by gradient full ascent instead of
gradient underweighted ascent. Consequently, γ should be
carefully tuned on validation data in practice.

Motivations of design. The idea of SIGUA is motivated
in the introduction, and its specific algorithm design is mo-
tivated here. At least four questions can be raised:
Q1 What B can be used and what are its Cgood and Cbad?
Q2 What is the technical implication of gradient ascent?
Q3 Why gradient ascent is necessary for training fθ?
Q4 Why underweight is necessary for gradient ascent?

Among these questions, Q1 is most complicated—we will
devote the entire Section 3 for answering it; the other three
questions are answered below one by one.

The technical implication of gradient ascent depends on k
and `. Consider binary classification, and assume ` : R ×
Y → R+ satisfies a symmetric condition (du Plessis et al.,
2014; Niu et al., 2016): `(t,+1) + `(t,−1) = Const., for
example ramp loss and sigmoid loss (cf. Kiryo et al., 2017).
Then, we can obtain that

−∇θ`(fθ(xi), ỹi) = ∇θ`(fθ(xi),−ỹi),

SIGUA: Forgetting May Make Learning with Noisy Labels More Robust

— StopGrad — — SIGUA —

—
W

ide
net—

0 50 100 150 200 250 300
Epoch

0

20

40

60

80

100

Ac
cu
ra
cy

Intact
Flipped
Test

0 50 100 150 200 250 300
Epoch

0

20

40

60

80

100

Ac
cu
ra
cy

—
D

eep
net—

0 50 100 150 200 250 300
Epoch

0

20

40

60

80

100

Ac
cu
ra
cy

0 50 100 150 200 250 300
Epoch

0

20

40

60

80

100

Ac
cu
ra
cy

Figure 1. StopGrad vs. SIGUA on noisy MNIST.

which indicates that ascent along such a gradient is equiv-
alent to descent along another gradient where ỹi is flipped.
For binary classification, −ỹi must be correct if ỹi is incor-
rect for xi, which implies SIGUA is exactly same as label
correction. When ` does not satisfy that symmetric condi-
tion, they become different but still conceptually similar.

That being said, for multi-class classification where k ≥ 3,
we cannot know which class is correct if ỹi is incorrect for
xi. Hence, we let the model forget the wrong information
that xi is from class ỹi. This forgetting behavior can return
some capacity back to the model, and later the model may
use this capacity in a better way. This forgetting behavior
is the key of SIGUA and what we meant by forgetting may
make learning with noisy labels more robust in the title.

Concerning why gradient ascent is necessary or why Stop-
Grad is inadequate, we answer it with empirical evidence.
We take the MNIST benchmark dataset and add 80% sym-
metric label noise: for each xi, Pr(ỹi = yi) = 0.2 and for
all y 6= yi, Pr(ỹi = y) = 0.8/9. Two neural networks are
considered in this experiment:
• a wide network with an architecture 784-[Lin(10k)-BN-

ReLU]-[Lin(100)-BN-ReLU]-Lin(10) which has 8,871k
parameters coming from 5 trainable layers;

• a deep network with an architecture 784-[Lin(500)-BN-
ReLU]*5-Lin(10) which has 1,405k parameters coming
from 11 trainable layers.

Note that MNIST contains 60k training data, where 12k is
intact and 48k is flipped, and thus the two neural networks
are clearly over-parameterized. The base learning method
B is standard training that treats Sb as drawn from p(x, y)
where nb is 1024. The optimizer O is the popular momen-
tum SGD, where the learning rate and momentum are fixed
to 0.01 and 0.9—there is no learning rate decay, otherwise
StopGrad may be inadequate due to learning rate decay.

Since this experiment is for illustrating our motivation, we
design Cgood and Cbad using the true labels. The number of

epochs is 300 and the shift is between 150 and 151: before
the shift, we let Cgood(xi, ỹi) = 1, and then StopGrad and
SIGUA would fit all training data; after the shift, we let

Cgood(xi, ỹi) = I(ỹi = yi), Cbad(xi, ỹi) = I(ỹi 6= yi),

where I denotes the indicator function and it tests a condi-
tional expression, and then they would fit only intact data.
We let γ = 0 for StopGrad and γ = 0.001 for SIGUA, and
as a result StopGrad would ignore flipped data but SIGUA
would counter-fit flipped data during epochs 151–300. We
repeat this random label flipping and training 5 times.

The experimental results are shown in Figure 1, where the
means with standard deviations of the accuracy curves are
plotted. In Figure 1, blue means training accuracy on intact
data, red means that on flipped data, and purple means test
accuracy on label-noise-free test data. We can see that
• the wide and deep networks can both memorize all data,

while perfect memorization occurred around epoch 120
for the wide one and epoch 60 for the deep one, namely
the deep memorized faster than the wide;

• in fact the wide not only memorized slower but also for-
got faster, implying that its model capacity is lower than
the deep, even though it has 5 times more parameters;

• at the end of training, StopGrad made the wide and deep
networks forget 5% and 0% flipped data, while their test
accuracy was improved from 23% to 59% and 41%;1

• SIGUA made both of them forget 99% flipped data and
their test accuracy was improved from 23% to 95%.

Note that MNIST contains 10 classes, so that the accuracy
on flipped data lower than 10% means that perfect memo-
rization has already been erased. Indeed, SIGUA made the
accuracy on flipped data lower than 1%, which means that
the model memorized a fact that the labels of those flipped
data are flipped. In other words, SIGUA achieved learning
with complimentary labels on those flipped data implicitly
(Ishida et al., 2017; Yu et al., 2018; Ishida et al., 2019; Feng
et al., 2020; Chou et al., 2020).

Lastly, the necessity of the underweight parameter γ is for
the stability of optimization. Without underweight for gra-
dient ascent, training may be completely destroyed, if O is
sophisticated and uses adaptive learning rates for different
parameters such as Adam (Kingma & Ba, 2015).

3. Two Realizations of SIGUA
In this section, we explain what B can be used in SIGUA.
We employ SIGUA to robustify self-teaching that belongs
to the sample-selection approach and backward correction
that belongs to the loss-correction approach. Self-teaching
and backward correction are two representative and more

1This is because the softmax cross-entropy loss on intact data
can still further approach to zero after perfect memorization.

SIGUA: Forgetting May Make Learning with Noisy Labels More Robust

importantly orthogonal methods in learning with noisy la-
bels, which spotlights the great versatility of SIGUA.

SIGUA robustifies self-teaching. The sample-selection
approach regards small-loss data as “correct”, and it trains
the model fθ only on selected small-loss data (Jiang et al.,
2018; Han et al., 2018b; Yu et al., 2019). Self-teaching, or
equivalently self-paced MentorNet (Jiang et al., 2018),2 is
the most primitive method in this direction. It maintains a
single model, selects small-loss data as useful knowledge,
and teaches this knowledge to itself.

In order to select small-loss data, a parameter of the label
corruption process is needed—the noise level ε measuring
how many labels are corrupted. Note that ε is a scalar and
can be easily estimated in practice (e.g., Liu & Tao, 2016;
Patrini et al., 2017). Then, the rate of data to be selected is

ρ(t) = 1− ε ·min(t/Tk, 1), (4)

where t is the current epoch number, and Tk is a hyperpa-
rameter denoting the number of epochs for warm-up. This
means we gradually select more and more data in the first
Tk epochs, and then we select a fixed amount of data from
epoch Tk, as the losses are unreliable after fθ is randomly
initialized and they become more and more reliable during
training (Han et al., 2018b). Subsequently, let us denote by
`i = `(fθ(xi), ỹi) for (xi, ỹi) ∈ Sb and define

Cgood(xi, ỹi) = I
(∑nb

j=1 I(`i > `j) ≤ nbρ(t)
)
, (5)

where I(`i > `j) tests if the loss on (xi, ỹi) is greater than
the loss on (xj , ỹj), and then

∑nb

j=1 I(`i > `j) counts how
many data in Sb have smaller losses than `i. Eq. (5) is true
if the count is smaller than or equal to nbρ(t), i.e., (xi, ỹi)
is a small-loss data in Sb. Self-teaching can be realized by
plugging Eq. (5) and Cbad(xi, ỹi) = 0 into Eq. (3).

Eq. (4) claims loss values can be enough informative after
Tk epochs, at which time many mislabeled data have been
memorized many times. Moreover, small-loss data are just
likely to be correct but not certainly, so that incorrect sam-
ple selection will mislead the model training which will in
turn mislead the selection next time. As a consequence, we
should employ SIGUA to robustify self-teaching. Let δ(t)
be the rate of data to be forgotten, then Cbad(xi, ỹi) can be
defined similarly as

Cbad(xi, ỹi) = ¬Cgood(xi, ỹi)∧

I
(∑nb

j=1 I(`i > `j) ≤ nbρ(t) + nbδ(t)
)
, (6)

where ¬Cgood(xi, ỹi) is necessary for Eq. (3) but not Algo-
rithm 1. We refer to this self-teaching enhanced by Eq. (6)
as SIGUASL where SL stands for small loss.

2Technically, self-paced MentorNet uses sample reweighting,
but its idea is essentially similar to self-teaching.

It seems counter-intuitive to select middle-loss data rather
than large-loss data as our bad data. In fact, large-loss data
are not memorized very well—no hope to confuse Cgood in
Eq. (5), and then no need to be selected by Cbad in Eq. (6).
On the other hand, similarly to large-loss data, middle-loss
data might be mislabeled with high probability, while they
are memorized relatively well. To this end, we would like
the model to slightly forget these middle-loss data, and let
Cgood be less confused by them. This motivates the design
of the bad-data condition Cbad in Eq. (6).

SIGUA robustifies backward correction. On the other
hand, the loss-correction approach creates a corrected loss
from ` and then trains the model fθ based on the corrected
loss (Patrini et al., 2017). Backward correction, for binary
classification (Natarajan et al., 2013) or multi-class classi-
fication (Patrini et al., 2017), is the most primitive method
in this direction. It builds `← : Rk ×Y → R to reverse the
label corruption process, and minimizes

R̂←(f) = 1
n

∑n
i=1 `

←(f(xi), ỹi), (7)

which is the corrected empirical risk.

In order to reverse the label corruption process, a model of
it is needed. Note that p(ỹ | x) =

∑
y p(ỹ | x, y)p(y | x).

A model for p(ỹ | x, y) is called instance-dependent noise
(cf. Menon et al., 2018; Cheng et al., 2020; Berthon et al.,
2020), which is unfortunately unidentifiable without some
extra assumption/information. Thus, a common practice is
to assume that p(ỹ | x, y) = p(ỹ | y), i.e., the corruption is
instance-independent and class-conditional. This model is
called class-conditional noise (CCN). Let T ∈ Rk×k+ be a
transition matrix such that [T]i,j = p(ỹ = j | y = i). This
T is much more difficult to estimate than ε, which is a hot
topic in learning with noisy labels and there are still many
methods (Liu & Tao, 2016; Patrini et al., 2017; Han et al.,
2018a; Hendrycks et al., 2018; Xia et al., 2019; Yao et al.,
2020; Xia et al., 2020). Using T , `← is defined as

`←(f(x), ỹ) = [T−1`y|f(x)]ỹ, (8)

where `y|f(x) = (`(f(x), 1), . . . , `(f(x), k)) ∈ Rk+, and it
holds that (Patrini et al., 2017, Theorem 1)

ES [R̂←(f)] = Ep(x,ỹ)[`←(f(x), ỹ)] = R(f), (9)

i.e., R̂←(f) is an unbiased estimator of R(f) or backward
correction is risk-consistent.

Nonetheless, we should be careful of the above theoretical
guarantee. Eq. (9) is about the asymptotic case rather than
the finite-sample case. Note that T−1 ∈ Rk×k though T ∈
Rk×k+ , and then `← is no longer a non-negative loss. Since
we are minimizing `←(fθ(xi), ỹi) where (xi, ỹi) is from a
finite sample S and fθ is an over-parameterized model, the

SIGUA: Forgetting May Make Learning with Noisy Labels More Robust

loss must go negative sooner or later whenever it could go
negative (Kiryo et al., 2017; Ishida et al., 2019; Lu et al.,
2020). If `←(fθ(xi), ỹi) is fairly negative, it signifies that
(xi, ỹi) has been memorized too much and it suggests that
the optimizer O should focus on the data whose losses are
still positive. Consequently, we should employ SIGUA to
robustify backward correction.

More specifically, we have two choices, as there is no spe-
cific good-data condition yet: one focuses on `←(f(x), ỹ),
and the other focuses on T−1`y|f(x) as a whole. We adopt
the latter one, since requiring `←(f(x), ỹ) ≥ 0 may be too
strict and aggressive. Taking a closer look at the derivation
of backward correction, we can see that for any x,

pỹ|x
>`←ỹ|f(x) = py|x

>`y|f(x), (10)

where py|x = (p(y = 1 | x), . . . , p(y = k | x)), pỹ|x is as
py|x, and `←ỹ|f(x) = T−1`y|f(x). In Eq. (10), the right-hand
side is always non-negative, and so should be the left-hand
side. However, pỹ|x is unknown to us, and thus we replace
it with the uninformative uniform distribution. Finally, de-
note by 1 the all-one vector in Rk, and then the good- and
bad-data conditions can be defined as

Cgood(xi, ỹi) = I
(
1>`←ỹ|f(x) ≥ 0

)
, (11)

Cbad(xi, ỹi) = ¬Cgood(xi, ỹi). (12)

We refer to this backward correction enhanced by Eq. (11)
and Eq. (12) as SIGUABC.

4. Experiments
We verify the effectiveness of SIGUASL and SIGUABC on
noisy MNIST, CIFAR-10, CIFAR-100 and NEWS follow-
ing Han et al. (2018b). Three noises are considered:
• under symmetry-20%, [T]i,i = 0.8 and ∀j 6= i, [T]i,j =
0.2/9, where the intact-vs-flipped margin is 0.78;

• under symmetry-50%, [T]i,i = 0.5 and ∀j 6= i, [T]i,j =
0.5/9, where the intact-vs-flipped margin is 0.44;

• under pair-45%, [T]i,i = 0.55, [T]i,i mod 10+1 = 0.45,
and other entries are 0, where the margin is 0.10.

Thus, the noises move from easy to harder until very hard.
Additionally, we test SIGUASL and SIGUABC on the more
challenging open-set setting (Wang et al., 2018; Lee et al.,
2019) by replacing CIFAR-10 images with SVHN images
while keeping the labels of those “mislabeled” data intact.

According to the learning methods being involved, the ex-
periments can be divided into two sets. SET1 involves
• standard training with Cgood ≡ 1,Cbad ≡ 0,
• self-teaching with Cgood as Eq. (5) and Cbad ≡ 0,
• SIGUASL with Cgood as Eq. (5) and Cbad as Eq. (6).
The first method is B in this set where the surrogate loss `
is softmax cross-entropy loss. For ρ(t) in Eq. (4), Tk = 10

and ε is given as its true value; δ(t) is a constant indepen-
dent of t and depends only on the dataset. SET2 involves
• backward correction (BC) with Cgood ≡ 1,Cbad ≡ 0,
• non-negative backward correction (nnBC) with Cgood as

Eq. (11) and Cbad ≡ 0,
• SIGUABC with Cgood as Eq. (11) and Cbad as Eq. (12).
The first method is B in this set where ` in Eq. (8) is again
softmax cross-entropy loss. T is given as its true value for
constructing `← in Eq. (8). Note that our experiments are
proof-of-concept, and the baselines are just chosen for this
purpose. In principle, SIGUA can robustify other methods
(e.g., Reed et al., 2015; Goldberger & Ben-Reuven, 2017;
Hendrycks et al., 2019) provided that we could distinguish
desired and undesired memorization conceptually.

The six learning methods are implemented using PyTorch.
In SET1, O is Adam (Kingma & Ba, 2015) in its default,3

and the number of epochs is 200 with batch size nb as 128;
the learning rate is linearly decayed to 0 from epoch 80 to
200. We set γ = 0.01 for all cases, except that γ = 0.001
for pair-45% of MNIST. SET2 is a bit complicated:
• for MNIST, O is Adam with betas as (0.9, 0.1), and lr is

divided by 10 every 10 epochs;
• for CIFAR-10, O is SGD with momentum as 0.9, and lr

is divided by 10 every 20 epochs;
• other hyperparameters have the same values as in SET1.
We simply set γ = 1.0 for all cases. Neural network archi-
tectures for benchmark datasets are given in Appendix A.
Data augmentation is excluded from consideration (cf. Ma
et al., 2018; Zhang & Sabuncu, 2018), as our experiments
are proof-of-concept. Due to the limited space, the exper-
iments on CIFAR-100 and NEWS are completely deferred
to Appendix B. All the experiments are repeated five times
and the mean accuracy with standard deviation is recorded
for each method in SET1 or SET2.

SET1 results. Figure 2 shows the accuracy curves of the
three methods in SET1 (MNIST in the top and CIFAR-10
in the bottom). We can clearly see in Figure 2 that models
learned patterns first, and hence a robust learning method
should be able to stop (or alleviate) the accuracy decrease.
On this point, SIGUASL stopped the decrease in Standard
and Self-Teach under two symmetry cases, and alleviated
the decrease under pair-45%, on MNIST.4 SIGUASL did a
particularly good job on CIFAR-10, where it successfully
made the accuracy continue to increase without a remark-
able decrease, which indicates that SIGUASL is superior to
early stopping. Table 1 shows the average accuracy under
the open-set noise and we can see SIGUASL outperformed

3With learning rate lr as 0.001 and coefficients for computing
running averages of gradient and its square betas as (0.9, 0.999).

4The model on MNIST is exactly same as CIFAR-10/100—a
9-layer CNN—which is more than needed. This makes the accu-
racy very high in the beginning, while the overfitting is owing to
not only noisy labels but also excess expressive power.

SIGUA: Forgetting May Make Learning with Noisy Labels More Robust

—— Symmetry-20% —— —— Symmetry-50% —— —— Pair-45% ——

—
—

M
N

IST
—

—

0 50 100 150 200
Epoch

0.88

0.90

0.92

0.94

0.96

0.98

1.00

T
e
st

 A
cc

u
ra

cy

Standard

Self-Teach

SIGUA_SL

0 50 100 150 200
Epoch

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

T
e
st

 A
cc

u
ra

cy

0 50 100 150 200
Epoch

0.50

0.60

0.70

0.80

0.90

1.00

T
e
st

 A
cc

u
ra

cy

—
—

C
IFA

R
-10

—
—

0 50 100 150 200
Epoch

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

T
e
st

 A
cc

u
ra

cy

0 50 100 150 200
Epoch

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

T
e
st

 A
cc

u
ra

cy

0 50 100 150 200
Epoch

0.45

0.50

0.55

0.60

0.65

T
e
st

 A
cc

u
ra

cy

Figure 2. Accuracy curves of training deep networks using the three learning methods in SET1.

Table 1. Average test accuracy (in %) over the last ten epochs on
CIFAR-10 under 40% open-set noise from SVHN.

Standard Self SIGUASL BC nnBC SIGUABC

56.44 79.72 81.31 52.03 73.39 74.33

Self-Teach significantly. In summary, SIGUA consistently
improved Self-Teach under the easy, harder, and very hard
noises (note that the scales of y-axis are different), and the
improvements were always significant.

SET2 results. Figure 3 shows the accuracy curves of the
three methods in SET2. Surprisingly, models trained with
BC still learned patterns first, even though ` was corrected
into `←. This implies there should be some other cause of
overfitting (since Eq. (10) holds for any x), and indeed the
cause is negative `← on certain (xi, ỹi). In Figure 3, nnBC
was sometimes good enough but sometimes not enough to
stop or alleviate the accuracy decrease, since nnBC tries to
ignore rather than fix any negative loss. SIGUABC stopped
the decrease in 5 cases and alleviated it in 1 case by fixing
negative losses. In Table 1, we can also see that SIGUABC
outperformed BC and nnBC significantly. In order to sum
up, SIGUA consistently improved BC/nnBC under differ-
ent noises, and the improvements were often significant.5

Comparing results from SET1 and SET2. Note that ε
or T is given to SET1 or SET2 methods, and thus there is
no error in estimating the label corruption process. We can
roughly see on MNIST, the performance of SIGUASL and

5Notice that nnBC is also a method proposed in this paper.

SIGUABC were very close under two symmetry cases, but
SIGUABC was superior under pair-45%; on CIFAR-10, the
performance of SIGUABC was inferior to SIGUASL under
symmetry cases and again superior under pair-45%.6

This is because the small-loss criterion is more reliable un-
der symmetry noises than pair noises, where the reliability
is determined by the intact-vs-flipped margin more than by
the noise level ε. On the other hand, Eq. (8) for construct-
ing `← is equally reliable under different noises as long as
the noise belongs to CCN. This explains why SET2 meth-
ods were remarkably outperformed by SET1 methods un-
der open-set noise—this noise does not even belong to the
label noise, let alone CCN. Actually, sample selection is a
bit more general than loss correction and label correction,
in a sense that it serves as corrections for not only flipping
y in label noise but also replacing x in open-set noise.

Last but not least, comparing SET1 and SET2, we can find
that desired memorization is not a concept definitely asso-
ciated with intact data, and then neither is undesired mem-
orization definitely associated with flipped data.

Comparison with supervised learning. Next, we inves-
tigate the performance gap between SIGUA and the oracle
supervised learning with clean labels. In supervised learn-
ing, we train the same model using the same optimizer but
on label-noise-free training data, and thus its performance
upper bounds the performance of any learning method, no

6The comparison is slightly unfair, since SET1 methods only
knew ε whereas SET2 methods fully knew T .

SIGUA: Forgetting May Make Learning with Noisy Labels More Robust

—— Symmetry-20% —— —— Symmetry-50% —— —— Pair-45% ——

—
—

M
N

IST
—

—

0 50 100 150 200
Epoch

0.95

0.96

0.97

0.98

0.99

1.00

T
e
st

 A
cc

u
ra

cy

BC

nnBC

SIGUA_BC

0 50 100 150 200
Epoch

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

T
e
st

 A
cc

u
ra

cy

0 50 100 150 200
Epoch

0.75

0.80

0.85

0.90

0.95

1.00

T
e
st

 A
cc

u
ra

cy

—
—

C
IFA

R
-10

—
—

0 50 100 150 200
Epoch

0.55

0.60

0.65

0.70

0.75

0.80

T
e
st

 A
cc

u
ra

cy

0 50 100 150 200
Epoch

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

T
e
st

 A
cc

u
ra

cy

0 50 100 150 200
Epoch

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

T
e
st

 A
cc

u
ra

cy

Figure 3. Accuracy curves of training deep networks using the three learning methods in SET2.

Table 2. Average test accuracy w. std dev (in %) over the last ten
epochs of supervised learning, SIGUASL and SIGUABC.

MNIST Symmetry-20% Symmetry-50% Pair-45%

Supervised 99.61 (0.02) 99.61 (0.02) 99.61 (0.02)
SIGUASL 98.91 (0.19) 98.10 (0.30) 89.37 (0.82)
SIGUABC 99.42 (0.10) 97.73 (0.05) 99.47 (0.02)

Table 3. Average test accuracy w. std dev (in %) over the last ten
epochs of SIGUABC and robust-loss-based learning methods.

MNIST Symmetry-20% Symmetry-50% Pair-45%

SIGUABC 99.42 (0.10) 97.73 (0.05) 99.47 (0.02)
Huber 93.61 (0.25) 65.38 (0.33) 56.48 (0.67)
Log-sum 94.35 (0.12) 67.46 (0.40) 57.38 (0.33)

matter existing or to be proposed in the future, for learning
with noisy labels. The results are shown in Table 2, where
SIGUA approximately approached the performance of su-
pervised learning and achieved a rather small performance
gap. It is not surprised, as MNIST is an easy dataset, CCN
is a relatively easy noise to correct, and T is given. In this
research area, instance-dependent noise is worth us to pay
more attention; within CCN the bottleneck/focus is how to
estimate T more and more accurately (Xia et al., 2019).

Comparison with robust losses. In the end, `← is com-
pared with Huber loss and log-sum loss for robust regres-
sion (Candes et al., 2008). To make use of them, let y and
ỹ be the one-hot vectors of y and ỹ, and `(f(x), ỹ) be the
sum of Huber/log-sum losses from k dimensions (f itself
is vector-valued). The assumed noise model is additive by
these losses: y and ỹ are continuous and their difference ε

is sampled from (1 − ε)N (0, σI) + εN (0, σ′I) where N
denotes the multivariate normal distribution, 0 denotes the
all-zero vector in Rk, and σ � σ′ for covariance matrices.
The results are shown in Table 3, where two robust losses
notably failed under symmetry-50% and pair-45%. It is as
expected, since they are specially designed to be robust to
outliers or similar additive noises, whereas `← is specially
designed to be robust to flipping noises.

5. Conclusions
We presented in this paper a versatile approach to learning
with noisy labels called SIGUA. By carefully distinguish-
ing desired and undesired memorization, SIGUA was suc-
cessful in robustifying two typical base learning methods:
self-teaching from sample selection, and backward correc-
tion from loss correction. We demonstrated through exper-
iments that two enhanced methods can result in significant
improvements. In general, SIGUA can be applied to other
methods or even other problem settings like learning from
similarity-unlabeled data (e.g., Bao et al., 2018) and pair-
wise comparison data (e.g., Xu et al., 2019).

SIGUA exhibits pulling optimization back for generaliza-
tion in learning with noisy labels. There should be a trade-
off between them implemented as an equilibrium between
gradient descent and ascent, and then the model will travel
between (uncountably infinite) reasonably good solutions,
where the goodness is in the sense of optimization instead
of generalization. See Ishida et al. (2020) for a dedicated
study of this phenomenon in supervised learning.

SIGUA: Forgetting May Make Learning with Noisy Labels More Robust

Acknowledgments
BH was supported by the Early Career Scheme (ECS)
through the Research Grants Council of Hong Kong un-
der Grant No.22200720, HKBU Tier-1 Start-up Grant,
HKBU CSD Start-up Grant and a RIKEN BAIHO Award.
IWT was supported by Australian Research Council un-
der Grants DP180100106 and DP200101328. MS was sup-
ported by the International Research Center for Neurointel-
ligence (WPI-IRCN) at The University of Tokyo Institutes
for Advanced Study.

References
Arpit, D., Jastrzebski, S., Ballas, N., Krueger, D., Bengio,

E., Kanwal, M., Maharaj, T., Fischer, A., Courville, A.,
and Bengio, Y. A closer look at memorization in deep
networks. In ICML, 2017.

Bao, H., Niu, G., and Sugiyama, M. Classification from
pairwise similarity and unlabeled data. In ICML, 2018.

Berthon, A., Han, B., Niu, G., Liu, T., and Sugiyama, M.
Confidence scores make instance-dependent label-noise
learning possible. arXiv:2001.03772, 2020.

Candes, E., Wakin, M., and Boyd, S. Enhancing sparsity by
reweighted l1 minimization. Journal of Fourier analysis
and applications, 14(5-6):877–905, 2008.

Cheng, J., Liu, T., Ramamohanarao, K., and Tao, D. Learn-
ing with bounded instance- and label-dependent label
noise. In ICML, 2020.

Chou, Y.-T., Niu, G., Lin, H.-T., and Sugiyama, M. Unbi-
ased risk estimators can mislead: A case study of learn-
ing with complementary labels. In ICML, 2020.

du Plessis, M. C., Niu, G., and Sugiyama, M. Analysis of
learning from positive and unlabeled data. In NeurIPS,
2014.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient
methods for online learning and stochastic optimization.
Journal of Machine Learning Research, 12:2121–2159,
2011.

Feng, L., Kaneko, T., Han, B., Niu, G., An, B., and
Sugiyama, M. Learning with multiple complementary
labels. In ICML, 2020.

Glorot, X. and Bengio, Y. Understanding the difficulty of
training deep feedforward neural networks. In AISTATS,
2010.

Goldberger, J. and Ben-Reuven, E. Training deep neural-
networks using a noise adaptation layer. In ICLR, 2017.

Goodfellow, I., Bengio, Y., and Courville, A. Deep learn-
ing. MIT Press, 2016.

Han, B., Yao, J., Niu, G., Zhou, M., Tsang, I., Zhang, Y.,
and Sugiyama, M. Masking: A new perspective of noisy
supervision. In NeurIPS, 2018a.

Han, B., Yao, Q., Yu, X., Niu, G., Xu, M., Hu, W., Tsang,
I., and Sugiyama, M. Co-teaching: Robust training of
deep neural networks with extremely noisy labels. In
NeurIPS, 2018b.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep into
rectifiers: Surpassing human-level performance on ima-
genet classification. In CVPR, 2015.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In CVPR, 2016.

Hendrycks, D., Mazeika, M., Wilson, D., and Gimpel, K.
Using trusted data to train deep networks on labels cor-
rupted by severe noise. In NeurIPS, 2018.

Hendrycks, D., Lee, K., and Mazeika, M. Using pre-
training can improve model robustness and uncertainty.
In ICML, 2019.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerat-
ing deep network training by reducing internal covariate
shift. In ICML, 2015.

Ishida, T., Niu, G., Hu, W., and Sugiyama, M. Learning
from complementary labels. In NeurIPS, 2017.

Ishida, T., Niu, G., Menon, A. K., and Sugiyama, M.
Complementary-label learning for arbitrary losses and
models. In ICML, 2019.

Ishida, T., Yamane, I., Sakai, T., Niu, G., and Sugiyama,
M. Do we need zero training loss after achieving zero
training error? In ICML, 2020.

Jiang, L., Zhou, Z., Leung, T., Li, L., and Fei-Fei, L. Men-
tornet: Learning data-driven curriculum for very deep
neural networks on corrupted labels. In ICML, 2018.

Kingma, D. and Ba, J. Adam: A method for stochastic
optimization. In ICLR, 2015.

Kiryo, R., Niu, G., du Plessis, M. C., and Sugiyama, M.
Positive-unlabeled learning with non-negative risk esti-
mator. In NeurIPS, 2017.

Krogh, A. and Hertz, J. A. A simple weight decay can
improve generalization. In NeurIPS, 1991.

Laine, S. and Aila, T. Temporal ensembling for semi-
supervised learning. In ICLR, 2017.

SIGUA: Forgetting May Make Learning with Noisy Labels More Robust

Lee, K., Yun, S., Lee, K., Lee, H., Li, B., and Shin, J.
Robust inference via generative classifiers for handling
noisy labels. In ICML, 2019.

Liu, T. and Tao, D. Classification with noisy labels by
importance reweighting. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 38(3):447–461,
2016.

Lu, N., Zhang, T., Niu, G., and Sugiyama, M. Mitigat-
ing overfitting in supervised classification from two un-
labeled datasets: A consistent risk correction approach.
In AISTATS, 2020.

Ma, X., Wang, Y., Houle, M., Zhou, S., Erfani, S., Xia, S.,
Wijewickrema, S., and Bailey, J. Dimensionality-driven
learning with noisy labels. In ICML, 2018.

Menon, A. K., van Rooyen, B., and Natarajan, N. Learning
from binary labels with instance-dependent corruption.
Machine Learning, 107:1561–1595, 2018.

Miyato, T., Maeda, S., Ishii, S., and Koyama, M. Vir-
tual adversarial training: a regularization method for su-
pervised and semi-supervised learning. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 41
(8):1979–1993, 2019.

Morgan, N. and Bourlard, H. Generalization and parameter
estimation in feedforward nets: Some experiments. In
NeurIPS, 1990.

Nakkiran, P., Kaplun, G., Bansal, Y., Yang, T., Barak, B.,
and Sutskever, I. Deep double descent: Where bigger
models and more data hurt. In ICLR, 2020.

Natarajan, N., Dhillon, I., Ravikumar, P., and Tewari, A.
Learning with noisy labels. In NeurIPS, 2013.

Niu, G., du Plessis, M. C., Sakai, T., Ma, Y., and Sugiyama,
M. Theoretical comparisons of positive-unlabeled learn-
ing against positive-negative learning. In NeurIPS, 2016.

Patrini, G., Rozza, A., Menon, A., Nock, R., and Qu, L.
Making deep neural networks robust to label noise: a
loss correction approach. In CVPR, 2017.

Pennington, J., Socher, R., and Manning, C. D. GloVe:
Global vectors for word representation. In EMNLP,
2014.

Reed, S., Lee, H., Anguelov, D., Szegedy, C., Erhan, D.,
and Rabinovich, A. Training deep neural networks on
noisy labels with bootstrapping. In ICLR, 2015.

Robbins, H. and Monro, S. A stochastic approximation
method. The Annals of Mathematical Statistics, 22(3):
400–407, 1951.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V.,
Radford, A., Chen, X., and Chen, X. Improved tech-
niques for training gans. In NeurIPS, 2016.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: a simple way to prevent
neural networks from overfitting. Journal of Machine
Learning Research, 15(56):1929–1958, 2014.

Suzuki, T. Adaptivity of deep ReLU network for learning
in Besov and mixed smooth Besov spaces: optimal rate
and curse of dimensionality. In ICLR, 2019.

Tokui, S., Oono, K., Hido, S., and Clayton, J. Chainer: a
next-generation open source framework for deep learn-
ing. In NeurIPS Workshop on Machine Learning Sys-
tems, 2015.

Vapnik, V. N. Statistical Learning Theory. John Wiley &
Sons, 1998.

Wang, Y., Liu, W., Ma, X., Bailey, J., Zha, H., Song, L.,
and Xia, S. Iterative learning with open-set noisy labels.
In CVPR, 2018.

Wang, Y., Ma, X., Chen, Z., Luo, Y., Yi, J., and Bailey, J.
Symmetric cross entropy for robust learning with noisy
labels. In ICCV, 2019.

Welinder, P., Branson, S., Perona, P., and Belongie, S. The
multidimensional wisdom of crowds. In NeurIPS, 2010.

Xia, X., Liu, T., Wang, N., Han, B., Gong, C., Niu, G., and
Sugiyama, M. Are anchor points really indispensable in
label-noise learning? In NeurIPS, 2019.

Xia, X., Liu, T., Han, B., Wang, N., Gong, M., Liu, H.,
Niu, G., Tao, D., and Sugiyama, M. Parts-dependent
label noise: Towards instance-dependent label noise.
arXiv:2006.07836, 2020.

Xiao, T., Xia, T., Yang, Y., Huang, C., and Wang, X. Learn-
ing from massive noisy labeled data for image classifica-
tion. In CVPR, 2015.

Xu, B., Wang, N., Chen, T., and Li, M. Empirical evalua-
tion of rectified activations in convolutional network. In
ICML Deep Learning Workshop, 2015.

Xu, L., Honda, J., Niu, G., and Sugiyama, M. Uncoupled
regression from pairwise comparison data. In NeurIPS,
2019.

Yao, Y., Liu, T., Han, B., Gong, M., Deng, J., Niu,
G., and Sugiyama, M. Dual T: Reducing estima-
tion error for transition matrix in label-noise learning.
arXiv:2006.07805, 2020.

SIGUA: Forgetting May Make Learning with Noisy Labels More Robust

Yu, X., Liu, T., Gong, M., and Tao., D. Learning with
biased complementary labels. In ECCV, 2018.

Yu, X., Han, B., Yao, J., Niu, G., Tsang, I. W., and
Sugiyama, M. How does disagreement help generaliza-
tion against label corruption? In ICML, 2019.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals,
O. Understanding deep learning requires rethinking gen-
eralization. In ICLR, 2017.

Zhang, Z. and Sabuncu, M. Generalized cross entropy loss
for training deep neural networks with noisy labels. In
NeurIPS, 2018.

SIGUA: Forgetting May Make Learning with Noisy Labels More Robust

Table 4. CNN on MNIST and CIFAR-10/100.

Input 28×28 Gray Image
32×32 Color Image

Block 1

Conv(3×3, 128)-BN-LReLU
Conv(3×3, 128)-BN-LReLU
Conv(3×3, 128)-BN-LReLU

MaxPool(2×2, stride = 2)
Dropout(p = 0.25)

Block 2

Conv(3×3, 256)-BN-LReLU
Conv(3×3, 256)-BN-LReLU
Conv(3×3, 256)-BN-LReLU

MaxPool(2×2, stride = 2)
Dropout(p = 0.25)

Block 3

Conv(3×3, 512)-BN-LReLU
Conv(3×3, 256)-BN-LReLU
Conv(3×3, 128)-BN-LReLU

GlobalAvgPool(128)

Score Linear(128, 10 or 100)

Table 5. CNN for open-set noise.
Input 32×32 Color Image

Block 1
Conv(3×3, 64)-BN-LReLU
Conv(3×3, 64)-BN-LReLU

MaxPool(2×2)

Block 2
Conv(3×3, 128)-BN-LReLU
Conv(3×3, 128)-BN-LReLU

MaxPool(2×2)

Block 3
Conv(3×3, 196)-BN-LReLU
Conv(3×3, 196)-BN-LReLU

MaxPool(2×2)

Score Linear(256, 10)

Table 6. 1D CNN on NEWS.
Input Sequence of Tokens

Embed 300D GloVe

Block 1 Conv(3, 100)-ReLU
GlobalMaxPool(100)

Score Linear(100, 7)

Table 7. MLP on NEWS.
Input Sequence of Tokens

Embed 300D GloVe

Block 1 Linear(300, 300)-Softsign
Linear(300, 300)-Softsign

Score Linear(300, 2)

A. Neural Network Architectures for Benchmark Datasets
Table 4 describes the 9-layer CNN (Laine & Aila, 2017; Miyato et al., 2019) used on MNIST and CIFAR-10/100. In fact,
it has 9 convolutional layers but 19 trainable layers. Table 5 describes the CNN used on CIFAR-10 under open-set noise.
It has 6 convolutional layers but 13 trainable layers. Furthermore, the 1D CNN on NEWS for SET1 methods and MLP on
NEWS for SET2 methods are given in Tables 6 and 7 respectively. Here, BN stands for batch normalization layers (Ioffe
& Szegedy, 2015); LReLU stands for Leaky ReLU (Xu et al., 2015), a special case of Parametric ReLU (He et al., 2015);
GloVe stands for global vectors for word representation (Pennington et al., 2014); Softsign is an activation function which
looks very similar to Tanh (Glorot & Bengio, 2010).

Note that the 9-layer CNN is a standard and common practice in weakly supervised learning, including but not limited to
semi-supervised learning (e.g., Laine & Aila, 2017; Miyato et al., 2019) and noisy-label learning (e.g., Han et al., 2018b).
Actually, this CNN was not born in those areas—it came from Salimans et al. (2016) where it served as the discriminator
of GANs on CIFAR-10. We decided to use this CNN, because then the experimental results are directly comparable with
previous papers in the same area, and it would be crystal clear where the proposed methods stand in the area.

That being said, SIGUA can definitely achieve better performance if given better models. In order to demonstrate this, let
us take ResNet-18 (He et al., 2016), the smallest ResNet in torch vision model zoo for example. The experimental results
are shown in Table 8. For each noise, we selected the better one among SIGUASL and SIGUABC, and replaced the model
with ResNet-18. We can see from Table 8 that the improvements were very great by training bigger ResNet-18.

Table 8. Average test accuracy (in %) over the last ten epochs on CIFAR-10.
SIGUASL under SIGUASL under SIGUABC
symmetry-20% symmetry-50% under pair-45%

9-layer CNN 84.05 77.12 81.82
ResNet-18 89.41 81.96 89.56
Absolute Acc Increase 5.36 4.84 7.74
Relative Err Reduction 33.61 21.15 42.57

B. More Experiments
Due to the limited space, the experiments on CIFAR-100 and NEWS are moved here. The setup of CIFAR-100 is similar
to CIFAR-10, but the momentum is 0.5 and lr is divided by 10 every 30 epochs for SET2 methods. The setup of NEWS is
similar to other three datasets, except O is AdaGrad (Duchi et al., 2011) that automatically decays lr every mini-batch.

Figure 4 shows the accuracy curves of the three methods in SET1 (CIFAR-100 in the top and NEWS in the bottom). The
trend in Figure 4 is similar to the trend in Figure 2 that SIGUASL either stopped or alleviated the decrease in Standard and

SIGUA: Forgetting May Make Learning with Noisy Labels More Robust

—— Symmetry-20% —— —— Symmetry-50% —— —— Pair-45% ——

—
—

C
IFA

R
-100

—
—

0 50 100 150 200
Epoch

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54
T
e
st

 A
cc

u
ra

cy

Standard

Self-Teach

SIGUA_SL

0 50 100 150 200
Epoch

0.20

0.25

0.30

0.35

0.40

0.45

T
e
st

 A
cc

u
ra

cy

0 50 100 150 200
Epoch

0.15

0.20

0.25

0.30

0.35

T
e
st

 A
cc

u
ra

cy

—
—

N
E

W
S

—
—

0 50 100 150 200
Epoch

0.78

0.80

0.82

0.84

0.86

0.88

T
e
st

 A
cc

u
ra

cy

0 50 100 150 200
Epoch

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

T
e
st

 A
cc

u
ra

cy

0 50 100 150 200
Epoch

0.45

0.50

0.55

0.60

0.65

0.70

0.75

T
e
st

 A
cc

u
ra

cy

Figure 4. Accuracy curves of training deep networks using the three learning methods in SET1.

—— Symmetry-20% —— —— Symmetry-50% —— —— Pair-45% ——

—
—

C
IFA

R
-100

—
—

0 50 100 150 200
Epoch

0.20

0.21

0.22

0.23

0.24

0.25

0.26

T
e
st

 A
cc

u
ra

cy

BC

nnBC

SIGUA_BC

0 50 100 150 200
Epoch

0.16

0.18

0.20

0.22

0.24

0.26

T
e
st

 A
cc

u
ra

cy

0 50 100 150 200
Epoch

0.10

0.12

0.14

0.16

0.18

0.20

0.22

T
e
st

 A
cc

u
ra

cy

—
—

N
E

W
S

—
—

0 50 100 150 200
Epoch

0.60

0.65

0.70

0.75

0.80

0.85

0.90

T
e
st

 A
cc

u
ra

cy

0 50 100 150 200
Epoch

0.40

0.45

0.50

0.55

0.60

T
e
st

 A
cc

u
ra

cy

0 50 100 150 200
Epoch

0.50

0.55

0.60

0.65

0.70

0.75

T
e
st

 A
cc

u
ra

cy

Figure 5. Accuracy curves of training deep networks using the three learning methods in SET2.

Self-Teach. Especially on CIFAR-100, after a remarkable decrease in the first half, the accuracy in the second half started
to increase once more, and it eventually surpassed the best accuracy that can be obtained by early stopping. If we plot the
test error rather than the test accuracy, this phenomenon is exactly an epoch-wise double descent (Nakkiran et al., 2020).
Figure 5 shows the accuracy curves of the three methods in SET2 where SIGUABC still stopped or alleviated the decrease
in BC and/or nnBC. The reason why BC suffered more under pair-45% may be explained by the maximum and minimum
elements of T−1: when k = 10, they are 2.101 and -1.719 under pair-45% but 2.125 and -0.125 under symmetry-50%. It
is interesting on CIFAR-10, nnBC and SIGUABC under pair-45% outperformed themselves under symmetry-20%, which
provides an evidence that the issue of negative losses can be fixed at least empirically.

